
## Physics 251: Atomic Physics Lab

[i.e. measurements, uncertainties, waves, light, quanta]



[ixnovi.people.wm.edu]

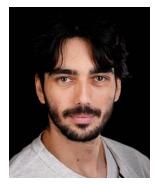


[wikiwand.com]

### Instructors

#### **Prof. Seth Aubin**

Office: room 255, Small Hall, tel: 1-3545 Lab: room 069, Small Hall (new wing), tel: 1-3532 e-mail: saaubi@wm.edu web: http://www.physics.wm.edu/~saubin/index.html


Office hours: Tuesday 12-1 pm & open office hours.

Mariami Bagishvili (TA: Wednesday section) e-mail: <u>mbagishvili@wm.edu</u> Office hours: Fridays 2:30-3:30 pm in room 133.

Alexandru Sturzu (TA: Thursday section) e-mail: <u>amsturzu@wm.edu</u> Office hours: Fridays 2:30-3:30 pm in room 133.







- Introduce basic experimental methods.
- Use error analysis and data analysis methods.
- Experiments that probe the wave and quantized nature of light & matter.
- Scientific communication.

- Introduce basic experimental methods.
- Use error analysis and data analysis methods.
- Experiments that probe the wave and quantized nature of light & matter.
- Scientific communication.

The labs will cover the following topics:

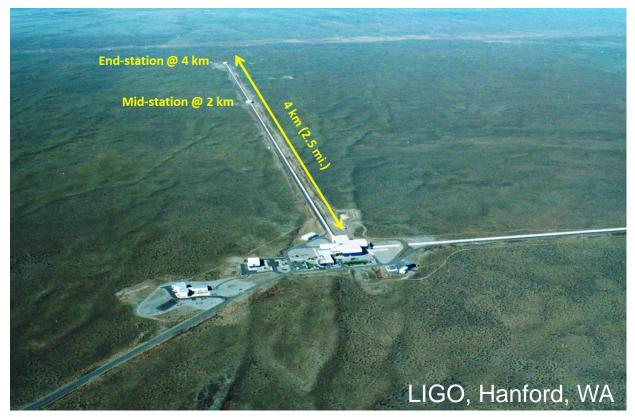
- Standard electronic lab equipment (oscilloscopes, etc).
- Optical sources (lasers, spectroscopy lamps, etc).
- Optical measurements (photodiodes, spectrometers, etc).
- Wave and particle nature of light and matter.

- Introduce basic experimental methods.
- Use error analysis and data analysis methods.
- Experiments that probe the wave and quantized nature of light & matter.
- Scientific communication.

The labs will cover the following topics:

- Standard electronic lab equipment (oscilloscopes, etc).
- Optical sources (lasers, spectroscopy lamps, etc).
- Optical measurements (photodiodes, spectrometers, etc).
- Wave and particle nature of light and matter.
- Data analysis: plots, fitting data, statistics, etc.
- Error analysis: evaluating uncertainties, error propagation.

- Introduce basic experimental methods.
- Use error analysis and data analysis methods.
- Experiments that probe the wave and quantized nature of light & matter.
- Scientific communication.


The labs will cover the following topics:

- Standard electronic lab equipment (oscilloscopes, etc).
- Optical sources (lasers, spectroscopy lamps, etc).
- Optical measurements (photodiodes, spectrometers, etc).
- Wave and particle nature of light and matter.
- Data analysis: plots, fitting data, statistics, etc.
- Error analysis: evaluating uncertainties, error propagation.
- Scientific communication: writing and presentations.
- Lab book note keeping.

### **Light as a Wave: Application**

LIGO: Laser Interferometer Gravitational-wave Observatory

- World's largest laser interferometer
- ➢ Most precise measurement of length changes: 10<sup>-19</sup> m
  - $\rightarrow$  1/10,000<sup>th</sup> the radius of proton.



[ligo.caltech.edu, 2022]

### **Course Work**

- > Lab report: due the week after completion of the lab.
- Pre-lab exercises test your knowledge of the upcoming lab experiment.
- Lab book is graded on completeness of notes, data, and analysis (and neatness).
- Special project is a final experiment with a presentation (replaces exam).
- > Participation is graded on involvement in lab, teamwork, and attendance.

Weighting:

| Lab reports:       | 50%  |
|--------------------|------|
| Pre-lab exercises: | 10%  |
| Lab book:          | 10%  |
| Participation:     | 10%  |
| Special project:   | 20%  |
| Total =            | 100% |



# *Text:* All course materials and lab manuals will be made available on the course website.

https://saaubi.people.wm.edu/TeachingWebPages/Physics251\_Fall2023/Physics251\_Fall2023.html



# *Text:* All course materials and lab manuals will be made available on the course website.

https://saaubi.people.wm.edu/TeachingWebPages/Physics251\_Fall2023/Physics251\_Fall2023.html

Some useful texts:

Introduction to Error Analysis, by J. R. Taylor (2nd ed.), University Science Books (1997).

**Data Reduction and Error Analysis for the Physical Sciences**, P. Bevington and D. K. Robinson (3rd ed.), McGraw-Hill (2003).

### **Computer Software**

Lab report writing: LaTex

→ recommend on-line editor/compiler: <u>www.overleaf.com</u>

#### Data analysis: Python

- $\rightarrow$  Libraries: Matplotlib, NumPy, SciPy.
- → recommended on-line editor/compiler: Google Colaboratory

colab.research.google.com

- $\rightarrow$  Spreadsheets (e.g. Excel, Google Docs, etc).
- $\rightarrow$  Alternates: MatLab, C/C++, Java, etc.

### **Tentative Schedule (I)**

Week 1: 8/30-31Introduction to Error AnalysisBasic error estimation, basic error propagation.

Week 2: 9/6-7Data Analysis and Scientific WritingPlotting data, Python (Matplotlib & NumPy), MatLab, Excel, LaTex.

Week 3: 9/13-14Experiment 1: Optical Interferometry IPre-lab exercise & reading, experiment setup, data taking, basic data analysis.

Week 4: 9/20-21Experiment 1: Optical Interferometry IIData analysis, improved data, write lab report (due following week).

Week 5: 9/27-28Experiment 2: Black Body Radiation IPre-lab exercise & reading, experiment setup, data taking, basic data analysis.

Week 6: 10/4-5Experiment 2: Black Body Radiation IIData analysis, improved data, write lab report (due following week).

Week 7: 10/11-12Fall Break – no labWhoo-hoo!

Week 8: 10/18-19Experiment 3: Faraday Rotation IPre-lab exercise & reading, experiment setup, data taking, basic data analysis.

### **Tentative Schedule (II)**

Week 9: 10/25-26 **Experiment 3: Faraday Rotation II** Data analysis, improved data, write lab report (due following week). Week 10: 11/1-2 Experiment 4: Single Photon Interference I Pre-lab exercise & reading, experiment setup, data taking, basic data analysis. Week 11: 11/8-9 **Experiment 4: Single Photon Interference II** Data analysis, improved data, write lab report (due following week). Week 12: 11/15-16 Experiment 5: Superconductivity I Pre-lab exercise & reading, experiment setup, data taking, data analysis, lab report. Week 13: 11/22-23 Thanksgiving Break – no lab Note: Superconductivity lab report due Week 14. Week 14: 11/29-30 Special Project I Pre-lab preparation, experiment setup, data taking, basic data analysis. Week 15: 12/6-7 **Special Project II** Data analysis, improved data, presentation preparation. **Special Project Due (Thursday section)** Dec. 14, 2023, 5 pm **Special Project Due (Wednesday section)** Dec. 15, 2023, 5 pm

## Precision & Accuracy Optical Atomic Clocks

#### Accuracy of an optical clock transition measurement: 10<sup>-16</sup>

<sup>171</sup>Yb clock transition: 518 295 836 590 863.71 ± 0.11 Hz

Precision of optical clock measurements: 10<sup>-18</sup>

[nist.gov: NIST Yb lattice clock]

## Accuracy = Confidence/Proof

Electron's g-factor (relates spin to magnetic moment)

Classical EM / Schrodinger:  $g_e = 1.0$ 

Relativistic electrodynamics + spin-1/2:  $g_e = 2.0$ 

Dirac:  $g_e = 2.0$ Quantum Electrodynamics (QED):  $g_e = 2.002 319 304 362(1)$ 

Theory and experiment agree to 9 digits.

 $\rightarrow$  High confidence in QED/Standard Model.



[Wikipedia, 2009]