
Blackbody Radiation

Experiment objectives: explore radiation from objects at certain temperatures, commonly
known as “blackbody radiation”; make measurements testing the Stefan-Boltzmann law;
measure the inverse-square law for thermal radiation.

Theory

A familiar observation to us is that dark-colored objects absorb more thermal radiation
(from the sun, for example) than light-colored objects. You may have also observed that a
good absorber of radiation is also a good emitter (like dark-colored seats in an automobile).
Although we observe thermal radiation (“heat”) mostly through our sense of touch, the
range of energies at which the radiation is emitted can span the visible spectrum (thus we
speak of high-temperature objects being “red hot” or “white hot”). For temperatures below
about 600◦C, however, the radiation is emitted in the infrared, and we cannot see it with
our eyes, although there are special detectors (like the one you will use in this lab) that can
measure it.

An object which absorbs all radiation incident on it is known as an “ideal blackbody”. In
1879 Josef Stefan found an empirical relationship between the power per unit area radiated
by a blackbody and the temperature, which Ludwig Boltzmann derived theoretically a few
years later. This relationship is the Stefan-Boltzmann law:

S = σT 4 (1)

where S is the radiated power per unit area (W/m2), T is the temperature (in Kelvins), and
σ = 5.6703× 10−8W/m2K4 is the Stefan’s constant.

Most hot, opaque objects can be approximated as blackbody emitters, but the most ideal
blackbody is a closed volume (a cavity) with a very small hole in it. Any radiation entering
the cavity is absorbed by the walls, and then is re-emitted out. Physicists first tried to
calculate the spectral distribution of the radiation emitted from the ideal blackbody using
classical thermodynamics. This method involved finding the number of modes of oscillation
of the electromagnetic field in the cavity, with the energy per mode of oscillation given by
kT . The classical theory gives the Rayleigh-Jeans law:

u(λ, T ) =
8πkT

λ4
(2)
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where u(λ)(J/m4) is the spectral radiance – energy radiated per unit area at a single wave-
length λ. This law agrees with the experiment for radiation at long wavelengths (infrared),
but predicts that u(λ) should increase infinitely at short wavelengths. This is not observed
experimentally (Thank heaven, or we would all be constantly bathed in ultraviolet light - a
true ultraviolet catastrophe!). In reality, the peak of radiation distribution as a function of
its wavelength depends on the blackbody temperature as described by Wien’s law:

λmaxT = 2.898× 10−3m ·K (3)

and the spectral radiance approaches zero for short wavelengths.
The breakthrough came when Planck assumed that the energy of the oscillation modes

can only take on discrete values rather than a continuous distribution of values, as in classical
physics. With this assumption, Planck’s law was derived:

u(λ, T ) =
8πhcλ−5

ehc/λkT − 1
(4)

where c is the speed of light and h = 6.626076 × 10−34J · s is the Planck’s constant. This
proved to be the correct description.

Radiation sensor operation principle

Imagine a metal wire connected to a cold reservoir at one end and a hot reservoir at the
other. Heat will flow between the ends of the wire, carried by the electrons in the conductor,
which will tend to diffuse from the hot end to the cold end. Vibrations in the conductor’s
atomic lattice can also aid this process. This diffusion causes a potential difference between
the two ends of the wire. The size of the potential difference depends on the temperature
gradient and on details of the conductive material, but is typically in the few 10s of µV/K.
A thermocouple, shown on the left, consists of two different conductive materials joined
together at one end and connected to a voltmeter at the other end. The potential is, of course,
the same at the joint, but the difference in material properties causes ∆V = V1 − V2 6= 0
between the separated ends. This ∆V is measured by the voltmeter and is proportional to
∆T . Your radiation sensor is a thermopile, simply a “pile” of thermocouples connected in
series, as shown at the right. This is done to make the potential difference generated by the
temperature gradient easier to detect.
Important: When using the thermal radiation sensor, make each reading quickly to keep
the sensor from heating up. Use sheets of white isolating foam (with the silvered surface
facing the lamp) to block the sensor between measurements.
Sensor calibration: To convert the radiation sensor readings VS to the detected thermal
radiation intensity Sdet (power per unit area), you need to use the voltage-to-power conversion
factor 22 V/W , and the area of the sensor 2mm× 2mm:

Sdet[W/m
2] =

VS[V ]

22[V/W ]
· 1

4 · 10−6[m2]
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Figure 1: Left : thermocouple construction; right : thermopile - an array of thermocouples
connected in series.

Test of the Stefan-Boltzmann Law

Equipment needed: Radiation sensor, multimeters, Stefan-Boltzmann Lamp, Power sup-
ply.

Before starting actual experiment take some time to have fun with the thermal radiation
sensor. Can you detect your lab partner? What about people across the room? Point the
sensor in different directions and see what objects affect the readings. These exercises are
fun, but you will also gain important intuition about various factors which may
affect the accuracy of the measurements!

1. Before turning on the lamp, measure the resistance of the filament of the Stefan-
Boltzmann lamp at room temperature. Record the room temperature, visible on the
wall thermostat.

2. To indirectly measure the temperature of the filament, we will use the known depen-
dence of its resistance on the temperature, given in table shown in Table. 1. To ensure
the accurate measurement, we will again use the four-point probe method (review the
video on the course web site, if you need a refresher) by measuring the voltage drop
across the lamp. VERY IMPORTANT: make all connections to the lamp when the
power is off, and ask the instructor to check your connections before proceeding.

3. Place the thermal sensor at the same height as the filament, with the front face of
the sensor approximately 5 cm away from the filament and fix their relative position.
Make sure no other objects are viewed by the sensor other than the lamp.

4. Turn on the lamp power supply. Set the voltage, V , in steps of 1-2 volt from 1-6 volts.
At each V , record the current running through the lamp and the voltage from the
radiation sensor. Calculate the resistance of the lamp using Ohm’s Law and determine
the temperature T of the lamp from the table shown in Table 1. Don’t forget to use
Kelvin scale for the temperatures (conversion equation is T [K] = T [oC] + 273).

5. Calculate the values of T 4 - these are going to be the x-values for the graph. Are they
more or less equally distributed? If not (which is probably the case), estimate the big
gaps, and measure additional points to fill them in.
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R/R300K Temp
K

Resistivity
µΩcm

R/R300K Temp
K

Resistivity
µΩcm

R/R300K Temp
K

Resistivity
µΩcm

1.0 300 5.65 5.48 1200 30.98 16.29 3000 92.04
1.43 400 8.06 6.03 1300 34.08 16.95 3100 95.76
1.87 500 10.56 6.58 1400 37.19 17.62 3200 99.54
2.34 600 13.23 7.14 1500 40.36 18.28 3300 103.3
2.85 700 16.09 7.71 1600 43.55 18.97 3400 107.2
3.36 800 19.00 8.28 1700 46.78 19.66 3500 111.1
3.88 900 21.94 8.86 1800 50.05 26.35 3600 115.0
4.41 1000 24.93 9.44 1900 53.35
4.95 1100 27.94 10.03 2000 56.67

Table 1: Table of tungsten’s resistance and resisitivity as a function of temperature. Here,
R300K is the resistance of tungsten at the temperature of 300 K. This dependence can be
approximated by the following relationship between the filament temperature T (in Kelvin)s

and the relative resistivity R/R300K: T = 292 · (R/R300K)5/6.

In the lab report plot the reading from the radiation sensor (convert to W/m2) (on
the y axis) versus the temperature T 4 on the x axis. According to the Stefan-Boltzmann
Law, the data should show a linear dependence, since according to Eq.(1) S ∝ T 4. Fit the
experimental data using a linear fit and its uncertainty. For an ideal blackbody we expect
the slope to be equal to the Stephen constant σ = 5.6703 × 10−8W/m2K4. However, there
exists no ideal black bodies. For real objects the Eq.(1) is modified, and written as:

S = εσT 4, (5)

where the coefficient ε is called emissivity and is defined as the ratio of the energy radiated
from a material’s surface to that radiated by a perfect blackbody at the same temperature.
The values of ε vary from 0 to 1, with one corresponding to an ideal blackbody. All real
materials have ε < 1, although some come quite close to the ideal (for example, carbon black
has ε = 0.95). The emissivity of a tungsten wire varies from ε = 0.032 (at 30◦C) to ε = 0.35
(at 3300◦C).

Unfortunately, it is impossible to measure the exact value of emissivity from the exper-
imental data, as the Stephan-Boltzman law describes the amount of radiation emitted by
the object per unit area. To relate S to the amount of detected radiation Sdet one needs to
know the surface area of the filament - something we cannot measure without breaking the
bulb (please don’t!). All we can say is that the emitted and detected radiation intensity are
proportional to one another. As a result, in this lab we are going to only verify the validity of
functional dependence described by Eq. (5) by testing the linear dependence of the detected
radiation on the filament temperature T 4.

To do that, fit the experimental data using the linear fit, find the proportionality coeffi-
cient and its uncertainty. To examine the quality of the fit more carefully, make a separate
plot of the residual - the difference between the experimental points and the fit values. For
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a proper fit function, we expect the residuals to be randomly distributed around zero within
the experimental measurement uncertainties. Analyze your results. Do the points seem to
systematically differ from the fit line in a particular region? Can you think of a reason why
that would be?

Test of the inverse-square law

Equipment needed: Radiation sensor, Stefan-Boltzmann lamp, multimeter, power supply,
meter stick. A point source of radiation emits that radiation according to an inverse square

Figure 2: Inverse square law setup

law: that is, the intensity of the radiation in (W/m2) is proportional to the inverse square
of the distance from that source. This way, the intensity at the certain distance from the
blackbody integrated over surface of the sphere of such radius is always constant. Mathe-
matically, we expect the relationship between the detected intensity Sdet, the total power of
the radiation source P0, and the distance to the point source r to be:

Sdet(r) =
P0

2πr2
(6)

1. Set up the equipment as shown in Fig. 2. Tape the meter stick to the table. Place the
Stefan-Boltzmann lamp at one end, and the radiation sensor in direct line on the other
side. The zero-point of the meter stick should align with the lamp filament (or, should
it?). Adjust the height of the radiation sensor so it is equal to the height of the lamp.
Align the system so that when you slide the sensor along the meter stick the sensor
still aligns with the axis of the lamp. Connect the multimeter (reading millivolts) to
the sensor and the lamp to the power supply.

2. With the lamp off, slide the sensor along the meter stick. Record the reading of
the voltmeter at 10 cm intervals. Average these values to determine the ambient
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level of thermal radiation. You will need to subtract this average value from your
measurements with the lamp on.

3. Turn on the power supply to the lamp. Set the voltage to approximately 5-7 V. Do
not exceed 13 V! Adjust the distance between the sensor and lamp from 2.5-100
cm and record the sensor reading. Before the actual experiment think carefully
about at what distances you want to take the measurements. Is taking
them at constant intervals the optimal approach? At what distances would
you expect the sensor reading change more rapidly?

4. Make a plot of the corrected radiation measured from the lamp versus the distance
from the lamp to the sensor x. Fit the data to

Sdet = S0 +
C

(x− x0)2
. (7)

5. What are the values of S0, C and x0 (and, of course, their uncertainties)?

6. Compare Eqs.(6) and (7). What are the physical meanings of the parameters S0, C
and x0. Do their values make sense, considering your experimental arrangements and
measurements?

7. Can the lamp be considered a point source? If not, how could this affect your mea-
surements?
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Universal thermometer

Blackbody radiation gives us an ability to measure the temperature of remote objects. Have
you ever asked yourself how do astronomer know the temperature of stars or other objects
many light years away? The answer - by measuring the light they emit and analyzing its
spectrum composition using the expressions for the blackbody radiation spectrum. Wein’s
law Eq.(3) links the wavelength at which the most radiation is emitted to the inverse of the
object’s temperature, thus the colder stars emit predominantly in red (hence the name “red
giants”), while emission pick for hot young stars is shifted to the blue, making them emit in
all visible spectrum.

Figure 3: Black body radiation spectrum for objects with different temperatures.

The human bodies, of course, are much cooler than stars and emit in infrared range.
This radiation is invisible to a human eye, but using proper detection methods it is possible
to create thermal maps of the surroundings with accuracy better than 1/10th of a degree.
Forward-looking infrared (FLIR) cameras have wide range of applications, from surveil-
lance and military operations to building inspection and repairs, night-time navigation and
hunting. As I write this in Fall 2020, in the middle of COVID19 pandemic, more and more
locations use such infrared sensors to measure visitors’ temperature at the building entrances
or the check points in airports.
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