
Faraday Rotation

Experiment objectives: Observe the Faraday Effect, the rotation of a light wave’s po-
larization vector in a material in the presence of a magnetic field directed along the light
propagation direction. Determine the relationship between the magnetic field and the rota-
tion angle by measuring the so-called Verdet constant of the material. Become acquainted
with some new tools: an oscilloscope, a function generator and an amplifier, and a new
technique: phase-locking.

Introduction

The term polarization refers to the direction of the electrical field in a light wave. Most
natural sources of light are not polarized, but we can use a special devices called polarizers
that transmits electric fields oriented in one direction and absorbs all others. Thus, a well-
defined polarization direction, along the polarizer axis. Also, the output of many lasers is
polarized.

Imagine a beam of light traveling in the z direction. We then polarize it in the x direction
(E = x̂E0 cos(kz−ωt)) by passing it through a polarizer and then pass it through a second
polarizer, with a transmission axis oriented at an angle θ with respect to the x axis. If we
detect the light beam after the second polarizer, the intensity is given by the Malus law:

I = I0 cos2 θ. (1)

It is easy to see that light is completely blocked if the two polarizers are oriented at 90o with
respect to each other - we usually refer to such polarizers as being “crossed”.

In everyday life most transparent materials do not change the polarization of light. How-
ever, in 1845 Michael Faraday discovered that he could rotate the direction of the light
polarization using a magnetic field, directed along the light propagation - we now call this
phenomena Faraday effect. The polarization vector rotates in proportion to the length of
the material L, the magnitude of the magnetic field B, and a material dependent constant
CV called the Verdet constant:

φ = CVBL. (2)

Typically CV depends on the wavelength of the light and has a value of a few rad/(T ·m).
To put it into prospective, the Earth magnetic field is 5 · 10−5T, and the magnetic field of
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a strong refrigerator magnet is around 10−3T. Thus, it is easy to estimate that unless very
strong magnets are used, the induced polarization rotation is very small, typically well below
a milliradian. This is a pretty small angle and it will require a special technique to detect.

The field, created in our laboratory by a solenoid, points in the direction of the light
beam, and the magnitude of the magnetic field at the center is . The length of the material,
which is a special sort of glass, is long. For a current of 0.1 A, we expect a rotation angle of
a few 10−4 radians.

Figure 1: The experimental arrangement for the Faraday rotation measurement. Note that
the polarization rotation angle φ due to Faraday effect is much smaller than shown.

We are going to take the polarized laser light and direct it through the glass rod, which
is inserted into the solenoid. Electric current induces magnetic field in the center of the
solenoid at the rate of 11.1 mT/A, that result in the rotation of the laser polarization by a
small angle φ. The beam then pass through a second polarizer with the transmission axis
at an angle θ with respect to the initial polarization of the laser, as shown in Fig.1. The
intensity of the light after the second polarizer then depend on the sum of the angle θ and
the additional rotation φ caused by the magnetic field:

I = I0 cos2(θ + φ) = I0(1 + cos(2θ + 2φ))/2 (3)

=
I0
2

+
I0
2

[cos 2θ cos 2φ− sin 2θ sin 2φ] ,

where I0 is the laser intensity after the first polarizer. As it is mentioned above, the expected
polarization rotation angle φ is very small, in order of a few 10−4 radians. Thus, we can
safely assume that sin 2φ ≈ 2φ and cos 2φ ≈ 1. Then, the expression for the transmitted
laser intensity becomes

I = I0
1 + cos 2θ

2
− φI0 sin 2θ. (4)

Here the first term describes the laser intensity after the second polarizer at zero magnetic
field, and the second term, proportional to φ = CVBL, shows the change in the transmission
due to the Faraday rotation.

To find the value of the Verde constant CV one obviously needs to find the linear depen-
dence of the polarization rotation angle on the applied magnetic field, according to Eq. 2.
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However, this is harder than it may seem. In reality, the term involving φ in Eq.(4) is much
smaller than the first term, and it can easily be buried in noise from a photo-detector. Thus,
to measure this small variation in transmission, we will use an experimental technique, called
phase-locking.

The phase-locking technique works in the following way. We will vary the magnetic field
periodically with time as a sine wave B(t) = B0 sin(2πft), causing the light polarization ro-
tation to “wiggle” at the same frequency. Then, if we observe the signal from the photodiode
as a function of time, accoreding to Eq.(4) it will look like a large constant with a small sine
wave “wobble” on it, along with some random noise with a similar magnitude to the wobble.
Oscilloscope can help us to remove the non-time-varying portion of the signal, using a high
pass filter (AC coupling). To get rid of the noise, we can take advantage of the fact that
we can predict how our expected signal looks in time. Since we know the period and phase
of the magnetic field, we can time our observations to be exactly in sync with the magnetic
field, and use this to average out the noise. To do that, we start the oscilloscope acquisition
at exactly the same time with respect to the magnetic field variation (using triggering func-
tion), and average multiple traces. What is left over is the wobble (our useful signal) in I,
essentially the φ(t) = CVLB(t) sin 2θ term. Knowing B,L and θ, we can now determine CV .

Experimental Setup

The experimental setup is shown in Fig. 2. Its main components are:

• A solenoid to produce the magnetic field. The conversion factor between the magnetic
field and the solenoid current is 11.1 mT/A.

• A glass rod inside the solenoid. The length of the rod L = 10 cm. You’ll measure CV

of this material.

• A polarized HeNe laser.

• A second polarizer, the “analyzer”.

• A photodiode to measure the laser intensity after the coil and the analyzer.

• A function generator and amplifier to supply current to the solenoid.

• A digital multimeter (DMM) to measure the solenoid current.

• A digital oscilloscope to read out the photodiode voltage.

Experimental Procedure

Preliminaries

Laser & photodiode setup The amplifier includes the laser power supply on the back.
Plug the laser in, being careful to match colors between the cable and the
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Figure 2: The experimental setup.

power supply’s connectors. Align the laser so it travels down the center of the
solenoid, through the glass rod, and into the center of the photodiode. Set the pho-
todiode load resistor to 1 kΩ. Plug the photodiode into a DMM and measure DC
voltage.

Calibration: intensity vs. θ We want to understand how the angle between the polariza-
tion vector of the laser light and the polarizer direction affects the intensity. Vary the
angle of the analyzing polarizer and use a white screen (e.g., piece of paper) to observe
how the intensity of the transmitted light changes. Find the angles that give you max-
imum and minimum transmission. Then, use the DMM to measure the photodiode
output as a function of θ, going between the maximum and minimum in small steps
(use your first pre-lab exercise to determine the size of the step). Plot the resulting
graph and verify that it follows Eq.(1).

Function Generator Setup Plug the function generator output and its trigger (a.k.a. pulse)
output into different channels on the scope. Trigger the scope on the trigger/pulse out-
put from the function generator and look at the function generator signal. Modify the
function generator to provide a 200 Hz sine wave with an amplitude of about 1 V. You
will be using these settings for the rest of the measurements, so do not touch the
function generator dials.

Amplifier setup Disconnect the output of the function generator from the oscilloscope and
plug it into the amplifier. Use a coaxial↔double-prong connector to feed the amplifier
output into the oscilloscope, still triggering it on the generator. Vary the amplifier dial
setting and observe the change in the output voltage. At some point, the output will
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become clipped, as the amplifier reaches its maximum power output. Record this dial
setting, and the amplitude of the sine wave, just as the clipping sets in. This is the
maximum useful output from the amplifier. Turn the dial all the way down, and hook
the amplifier up to the solenoid, with the DMM in series to measure AC current. Go
back to the maximum setting and measure the current flowing through the solenoid.
This is the maximum useful current. You now have a time varying magnetic field in
the solenoid and you can control its magnitude with the amplifier.

Measuring Faraday Rotation

Choice of θ Pick optimal θ, based on your pre-lab exercise, and be sure to tighten the
thumbscrew on the polarizer mount to make sure it does not change during the mea-
surements.

Faraday rotation Plug the photodiode output into the scope, set the scope so its channel
is DC coupled, and make sure that the “probe” setting is at 1x. Turn the amplifier dial
about halfway to the maximum setting you found. Observe the photodiode trace on the
scope, perhaps changing the volts/div setting so you can see the trace more clearly.
What is the voltage? Record it. The changing magnetic field should be causing a
change in the polarization angle of the laser light, which should cause a sinusoidal time
dependence to the photodiode signal, referred to as the “wobble”. Check if you can
see any wobble.

AC coupling The wobble is riding atop a large constant (DC) signal. The scope can remove
the DC signal by “AC coupling” the photodiode channel. This essentially directs the
scope input through a high pass filter. Do this, and then set the photodiode channel
to the 2 mV setting. You should now see a wobble. Vary the amplifier dial setting and
notice how the amplitude of the wobble changes. You are seeing the Faraday effect.

Reduce the noise The signal is noisy, but now we’ll really benefit from knowing the wave-
form that the function generator is producing. Because we trigger the scope on the
function generator, the maxima and minima for the useful signal will occur at the same
point on the scope screen (and in its memory bank). The scope has a feature that al-
lows you to average multiple triggers. Doing this mitigates the noise, since at each
point on the trace we are taking a mean, and the uncertainty in a mean decreases as
we increase the number of measurements N as 1/

√
N . Turn on the averaging feature

by going to the “Acquire” menu. Observe how the averaged trace becomes more stable
as you increase the number of traces being averaged. The larger the better, but ∼100
traces should be enough.

Take measurements You should now systematically measure the amplitude of the wobble
as a function of the current in the solenoid. There should be a linear relationship, which
can be fit to extract CV . Take about 10 measurements, evenly separated between the
smallest current for which there is a measurable wobble, and the maximum you found

5



earlier. In each case, you want to start acquisition (Run/Stop on the scope), let
the averaged signal converge onto a nice sine wave, stop acquisition and measure the
amplitude of the signal using the scope’s cursors. One measurement is shown in Fig. 3.
Record the negative and positive amplitudes Vlow and Vhigh (±640µV in Fig. 3) and
the peak to peak voltage ∆V (1.28 mV), along with the current in the coil – Icoil .
Estimate the uncertainty in your measurements based on the noise in your averaged
signal and/or the achievable accuracy of oscilloscope.

Figure 3: An example scope trace. The yellow curve is the output of the photodiode,
AC coupled and averaged over 128 traces. The blue curve is the trigger output from the
function generator and is being used to trigger the scope readout so that it’s in phase with
the changing magnetic field. The maximum and minimum amplitudes of the photodiode
signal are measured with the scope’s cursors.
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Data Analysis

A variation in the angle φ is related to a variation in the magnetic field B according to:

∆φ = CVL∆B (5)

We want to use this equation to extract CV . Both φ and B vary with time as sine waves.
We’ll take ∆φ and ∆B to be the amplitude of those waves (half the peak to peak). We
didn’t directly measure either quantity, but we can compute them. For ∆B it’s easy: ∆B =
11.1 mT/A×

√
2Icoil, where the

√
2 accounts for the fact that DMMs measure the root-mean-

squared (RMS) value of an AC signal, not the peak value.
Figuring out ∆φ is a little more difficult. We need to use our calibration dataset, which

relates the photodiode signal to the angle between the laser polarization and the analyzer’s
orientation. From that dataset, you can estimate dV/dθ at the value of θ you are using in
your experiment. Of course a change in the polarization of the laser, ∆φ is equivalent to
holding the laser polarization constant and changing the angle of the analyzer by −∆θ. So,
we can calculate:

∆φ =

[
dV

dθ

]−1
∆V

2
(6)

The factor of two is because we defined ∆V as the peak to peak voltage.
Complete the analysis by fitting ∆φ vs. ∆B to a straight line and then use Eq. 5 to

extract CV and its uncertainty (consider what the intercept should be). Check the quality
of your linear fit. If there are visible deviations, discuss possible reasons.
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