Covariance in Error Propagation

The covariance $\sigma_{\alpha\beta}^2$ "error" between fitting parameters α and β describes the **correlation** in their errors $\pm \Delta\alpha$ and $\pm \Delta\beta$.

- \rightarrow <u>Correlated errors</u> means that if α fluctuates upwards to $\alpha + \Delta \alpha$, then β tends to fluctuates upwards as well to $\beta + \Delta \beta$.
- \rightarrow *Independent errors* means that fluctuations on α have not impact on fluctuations of β , and vice versa.

Data with linear fit

Data with linear fit, NO covariance

Data with linear fit, COVARIANCE included

Error Propagation with Covariance

If you want to calculate the error $\pm \Delta f$ on calculating $f(\alpha, \beta)$, then the correct formula is:

$$\pm \Delta f = \pm \sqrt{(\frac{\partial f}{\partial \alpha})^2 (\Delta \alpha)^2 + (\frac{\partial f}{\partial \beta})^2 (\Delta \beta)^2 + 2(\frac{\partial f}{\partial \alpha})(\frac{\partial f}{\partial \beta})\sigma_{\alpha\beta}^2}$$
covariance

Covariance Matrix

When you use the "curve_fit" function from the "scipy.optimize" library, Python returns the "finalParametersErrors" array.

The "finalParametersErrors" array is actually called the "covariance matrix":

finalParametersErrors = covariance matrix =
$$\begin{bmatrix} \sigma \end{bmatrix} = \begin{bmatrix} (\Delta \alpha)^2 & \sigma_{\alpha\beta}^2 \\ \sigma_{\alpha\beta}^2 & (\Delta \beta)^2 \end{bmatrix}$$

The covariance matrix (or "error matrix") is always symmetric.

Propagating Errors without Derivatives

If we ignore correlations between errors (i.e. assume covariance = 0), then error propagation is done with the following familiar equation:

$$\pm \Delta f = \pm \sqrt{(\frac{\partial f}{\partial \alpha})^2 (\Delta \alpha)^2 + (\frac{\partial f}{\partial \beta})^2 (\Delta \beta)^2}$$

$$= \pm \sqrt{(\frac{\partial f}{\partial \alpha} \Delta \alpha)^2 + (\frac{\partial f}{\partial \beta} \Delta \beta)^2}$$

$$= \pm \sqrt{(\frac{\partial f}{\partial \alpha} \Delta \alpha)^2 + (\frac{\partial f}{\partial \beta} \Delta \beta)^2}$$

$$= \pm \sqrt{(\frac{\partial f}{\partial \alpha} \Delta \alpha)^2 + (\frac{\partial f}{\partial \beta} \Delta \beta)^2}$$

$$= \pm \sqrt{(\frac{\partial f}{\partial \alpha} \Delta \alpha)^2 + (\frac{\partial f}{\partial \beta} \Delta \beta)^2}$$

$$= \pm \sqrt{(\frac{\partial f}{\partial \alpha} \Delta \alpha)^2 + (\frac{\partial f}{\partial \beta} \Delta \beta)^2}$$

$$= \pm \sqrt{(\frac{\partial f}{\partial \alpha} \Delta \alpha)^2 + (\frac{\partial f}{\partial \beta} \Delta \beta)^2}$$

$$= \pm \sqrt{(\frac{\partial f}{\partial \alpha} \Delta \alpha)^2 + (\frac{\partial f}{\partial \beta} \Delta \beta)^2}$$

$$= \pm \sqrt{(\frac{\partial f}{\partial \alpha} \Delta \alpha)^2 + (\frac{\partial f}{\partial \beta} \Delta \beta)^2}$$

$$= \pm \sqrt{(\frac{\partial f}{\partial \alpha} \Delta \alpha)^2 + (\frac{\partial f}{\partial \beta} \Delta \beta)^2}$$

$$= \pm \sqrt{(\frac{\partial f}{\partial \alpha} \Delta \alpha)^2 + (\frac{\partial f}{\partial \beta} \Delta \beta)^2}$$

$$= \pm \sqrt{(\frac{\partial f}{\partial \alpha} \Delta \alpha)^2 + (\frac{\partial f}{\partial \beta} \Delta \beta)^2}$$

$$= \pm \sqrt{(\frac{\partial f}{\partial \alpha} \Delta \alpha)^2 + (\frac{\partial f}{\partial \beta} \Delta \beta)^2}$$

$$= \pm \sqrt{(\frac{\partial f}{\partial \alpha} \Delta \alpha)^2 + (\frac{\partial f}{\partial \beta} \Delta \beta)^2}$$

$$= \pm \sqrt{(\frac{\partial f}{\partial \alpha} \Delta \alpha)^2 + (\frac{\partial f}{\partial \beta} \Delta \beta)^2}$$

$$= \pm \sqrt{(\frac{\partial f}{\partial \alpha} \Delta \alpha)^2 + (\frac{\partial f}{\partial \beta} \Delta \beta)^2}$$

$$= \pm \sqrt{(\frac{\partial f}{\partial \alpha} \Delta \alpha)^2 + (\frac{\partial f}{\partial \beta} \Delta \beta)^2}$$

$$= \pm \sqrt{(\frac{\partial f}{\partial \alpha} \Delta \alpha)^2 + (\frac{\partial f}{\partial \beta} \Delta \beta)^2}$$

$$= \pm \sqrt{(\frac{\partial f}{\partial \alpha} \Delta \alpha)^2 + (\frac{\partial f}{\partial \beta} \Delta \beta)^2}$$

$$= \pm \sqrt{(\frac{\partial f}{\partial \alpha} \Delta \alpha)^2 + (\frac{\partial f}{\partial \beta} \Delta \beta)^2}$$

$$= \pm \sqrt{(\frac{\partial f}{\partial \alpha} \Delta \alpha)^2 + (\frac{\partial f}{\partial \beta} \Delta \beta)^2}$$

$$= \pm \sqrt{(\frac{\partial f}{\partial \alpha} \Delta \alpha)^2 + (\frac{\partial f}{\partial \beta} \Delta \beta)^2}$$

$$= \pm \sqrt{(\frac{\partial f}{\partial \alpha} \Delta \alpha)^2 + (\frac{\partial f}{\partial \beta} \Delta \beta)^2}$$

$$= \pm \sqrt{(\frac{\partial f}{\partial \alpha} \Delta \alpha)^2 + (\frac{\partial f}{\partial \beta} \Delta \beta)^2}$$

$$= \pm \sqrt{(\frac{\partial f}{\partial \alpha} \Delta \alpha)^2 + (\frac{\partial f}{\partial \beta} \Delta \beta)^2}$$

$$= \pm \sqrt{(\frac{\partial f}{\partial \alpha} \Delta \alpha)^2 + (\frac{\partial f}{\partial \beta} \Delta \beta)^2}$$
(definition of derivative)
$$= \pm \sqrt{(\frac{\partial f}{\partial \alpha} \Delta \alpha)^2 + (\frac{\partial f}{\partial \beta} \Delta \beta)^2}$$

Propagating Errors without Derivatives

If the derivative is complicated to derive, then you can just evaluate $f(\alpha, \beta)$, $f(\alpha \pm \Delta \alpha, \beta)$, and $f(\alpha, \beta \pm \Delta \beta)$ and use the formula:

$$\pm \Delta f = \pm \sqrt{[f(\alpha + \Delta \alpha, \beta) - f(\alpha, \beta)]^2 + [f(\alpha, \beta + \Delta \beta) - f(\alpha, \beta)]^2}$$
or
$$\pm \Delta f = \pm \sqrt{[f(\alpha - \Delta \alpha, \beta) - f(\alpha, \beta)]^2 + [f(\alpha, \beta - \Delta \beta) - f(\alpha, \beta)]^2}$$

or

$$\pm \Delta f = \pm \begin{cases} \frac{1}{4} [f(\alpha + \Delta \alpha, \beta) - f(\alpha - \Delta \alpha, \beta)]^2 + \cdots \\ \frac{1}{4} [f(\alpha, \beta + \Delta \beta) - f(\alpha, \beta - \Delta \beta)]^2 \end{cases}$$