Summer Research

- > Research is fun.
- Most physics summer research involves electronics.
- The following fellowships are available:
 Charles Center Summer Scholarships

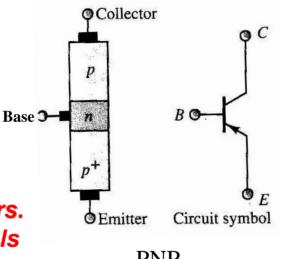
Cummings Memorial Summer Scholarship in the Sciences W & M Student Research Grants

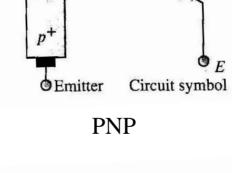
Chappell Undergraduate Research Fellowships REU (NSF): Research Experience for Undergraduates

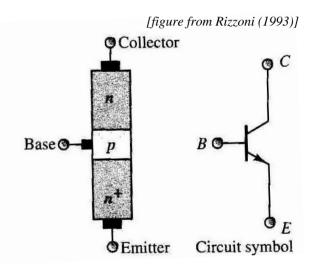
- Scholarships/grants typically provide ~\$3k + housing.
- > Deadline: March 20, 2007.

Benefits:

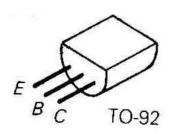
- Good way to see what sort of Physics is interesting to you.
- Good preparation for grad school.
- Looks good on applications/CV.

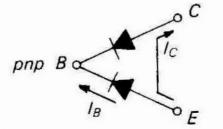


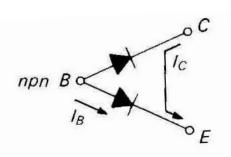



Introduction to Transistors

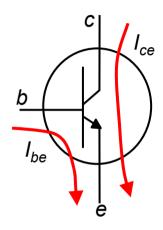
Bipolar Junction Transistors (BJTs)


- Transistor = Trans- resistor
- 3-terminal device
- > BJTs are made from 3 types of silicon.
- > Sort of like back to back diodes.
- > BJTs are current amplifiers. Base-Emitter current controls Collector-Emitter current.





NPN



Basic Transistor Model (I)

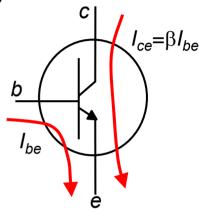
- Conventional notation
 - Collector-emitter current (I_{ce})
 - Base-emitter current (I_{be})
- ➤ In a *npn* transistor
 - Base current flows to the emitter when $V_b > V_e$
 - Collector current flows to the emitter when $V_c > V_e$

npn transistor

Basic Transistor Model (II)

"transistor rules" for an npn transistor to conduct current:

1.
$$V_{be} > 0$$

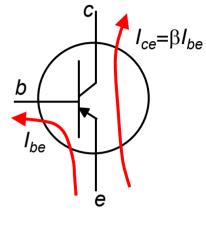

• Since this is a diode, normally $V_{be} \approx 0.6 \text{V}$

2. $V_{bc} < 0$

- Since this is a back-biased diode, base current will normally flow to the emitter.
- If $V_{bc} > 0$ then transistor goes into saturation.

3. Gain

- $I_{ce} = \beta I_{be}$
- " β " or h_{fe} is the gain typical 100 ~ 200
- A BJT is a current amplifier

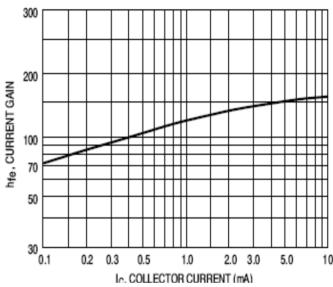


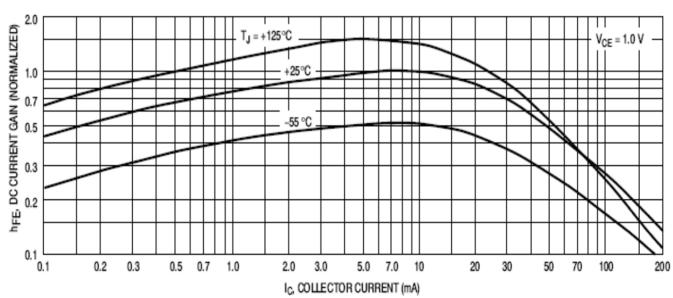
npn transistor

Basic Transistor Model (III)

The "transistor rules" are reversed for *pnp* transistors:

→ The arrow on the emitter indicates the way current is supposed to flow.


pnp transistor


Design Note: Circuit performance should not to depend on β too much !!!

- $\triangleright \beta$ depends on conditions (like temp.)
- $\triangleright \beta$ varies greatly from device to device

Don't Rely on β (h_{fe})

From the 2N3904 NPN BJT spec sheet

