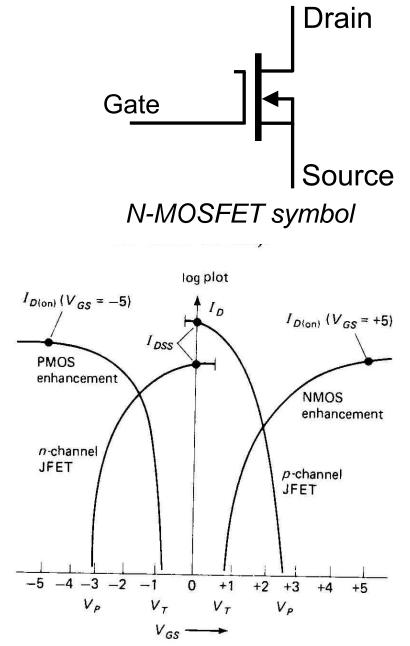
MOSFETs

MOSFETs are similar to JFETs, except:


- \succ V_p (JFETs) \rightarrow V_T (MOSFETs)
- V_T is positive for N-MOSFETs
- MOSFETs require a positive voltage on the Gate -- also no self-biasing.
- > Input impedance is $\sim 10^{14}\Omega$.

Power MOSFETs can handle 100's of Amps.

Generally, you must have I_{DS}>0 and V_{DS}>0 (for N-MOSFETs).

MOSFETs are used in most low power digital electronics chips.

MOSFETs are very susceptible to ElectroStatic Discharge (ESD).

[Figure from Horowitz & Hill p. 120]

ElectroStatic Discharge (ESD)

Common everyday actions generate large VOLTAGES (ESD) -- high impedance sources luckily !!!

TYPICAL ELECTROSTATIC VOLTAGES^a

Action	Electrostatic voltage	
	10%-20% humidity (V)	65%-90% humidity (V)
walk on carpet	35,000	1,500
walk on vinyl floor	12,000	250
work at bench	6,000	100
handle vinyl envelope	7,000	600
pick up poly bag	20,000	1,200
shift position on foam chair	18,000	1,500

[Table from Horowitz & Hill p. 170]

Most semiconductor components have some ESD susceptibility !

ESD is very bad for **MOSFETs**

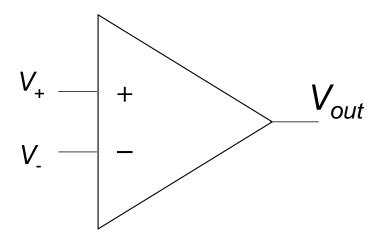
high power (X1200)

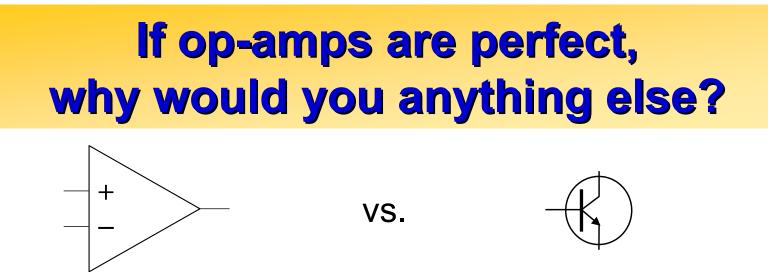
Figure 3.76. Scanning electron micrograph of a 6 amp MOSFET destroyed by 1kV charge on "human body equivalent" (1.5k in series with 100pF) applied to its gate. (Courtesy of Motorola, Inc.)

[Figure from Horowitz & Hill p. 170]

Introduction to Operational Amplifiers

Operational amplifiers (op-amps) are nearly ideal amplifiers:


- > Nearly infinite input impedance ... typically 1 M Ω 10¹⁴ Ω .
- ➢ Nearly infinite gain ... typically 10⁵-10⁶ at DC.
- > Small output impedance ... typically 10 Ω 0.1 Ω or less.


 \rightarrow Op-amp can drive currents of ~10 mA.

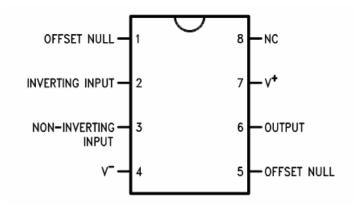
$$\succ V_{out} = Gain \times (V_+ - V_-).$$

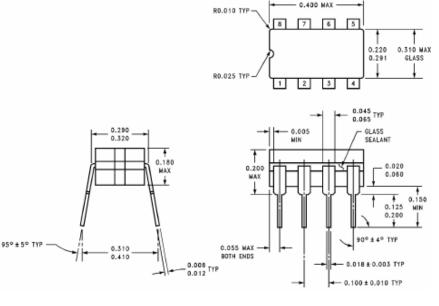
It's EASY to design circuits with op-amps !!!

Op-amp drawbacks:

- They usually require two power supplies (i.e. + 15 V and -15 V).
- They cannot provide a lot of power (i.e. Amps).
- > Emitter-follower and the common-emitter amplifier are simple and work well.

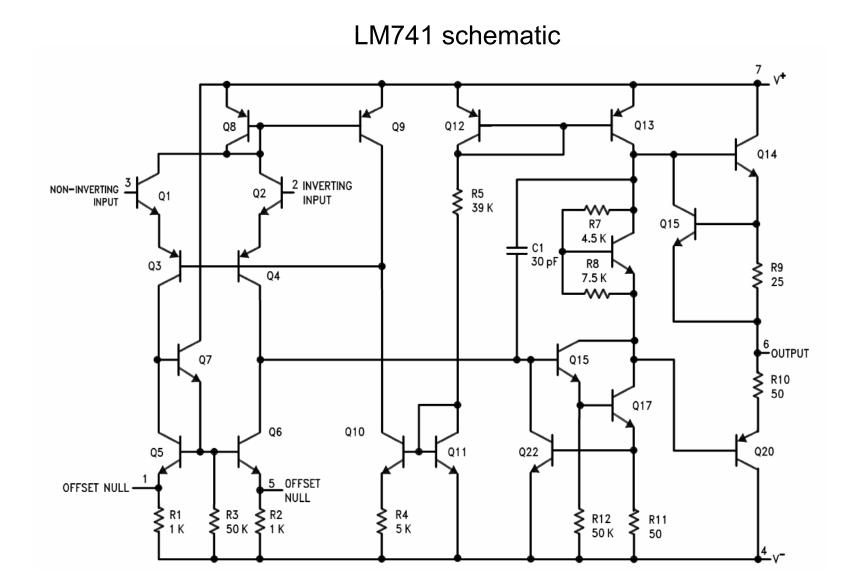
→ One frequently combines transistors and op-amps for power circuits.

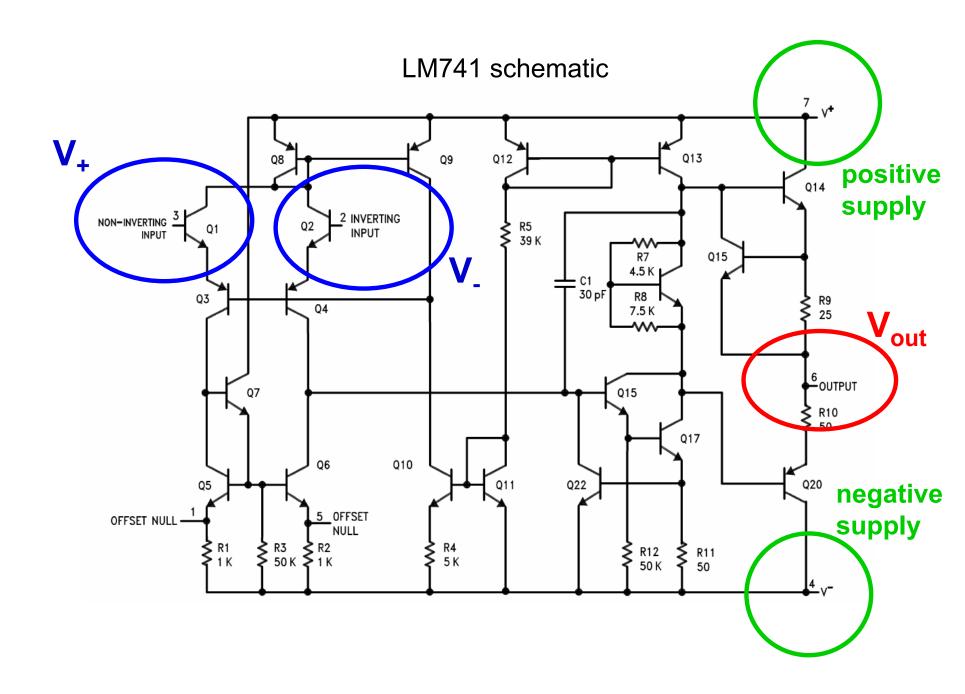

Integrated Circuits (ICs)


An op-amps is an integrated circuit:

- It has many discrete components (resistors, capacitors, and transistors)
- All made at the same time on the same piece of silicon.
- > Put into a standardized package (DIP-8).

Most of the circuit design is already done:


- Makes them easy to use.
- Fits directly into a breadboard.



Physical Dimensions Inches (millimeters) unless otherwise noted (Continued)

What's inside an op-amp?

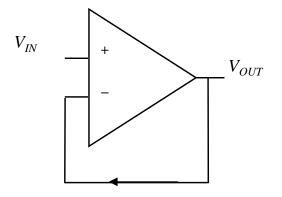
What's inside an op-amp?

What's inside an op-amp?

Push-Pull Amplifier LM741 schematic 7 v+ **Differential Amplifier** Q13 Q9 Q12 Q14 NON-INVERTING 3 2 INVERTING R5 39 K 02 01 INPUT w Q15 R7 4.5 K C1 30 pF R8 Q3 R9 ≶ Q4 7.5 K 25 w Q7 Q15 ≶ R10 50 Q17 Q6 Q10 011 Q20 Q22 05 5 OFFSET OFFSET NULL NULL **Å** R1 1 K R4 ≶ R12 Ş R11 5 K 50 K 50 **High-Gain Amplifier**

Op-amps and Feedback

Op-amps are hardly ever used as straight super-high gain amplifiers:


Gain is so large that the amplifier **output saturates** (i.e. go to the supply rails) for most reasonable signals.

- Susceptible to **manufacturing spread** of parameters.
- ➢ Gain has a non-linearities (i.e. can depend on voltage and frequency).

Feedback

Op-amps are almost always operated with negative feedback from the output to the V₋ input.

- Feedback stabilizes the performance of the op-amp.
 - → Feedback eliminates any dependence of the circuit on the op-amps open-loop specs.
- Feedback produces very linear gain.
- The price of feedback is reduced gain.
- ➢ We will discuss feedback in detail in two weeks.

Golden Rules of Op-amps

When using **feedback**, you can understand and design most op-amp circuits using the 2 following rules:

1. The op-amp inputs do not draw any current.

2. The op-amp will adjust its output so that the voltage difference between the 2 inputs is zero.