Important Dates
(undergraduates)

1. Oral presentations on April 21 & 23.

2. Outline + Figures due on Wednesday & Friday next week.

3. First draft of paper due on the day of your oral presentation.

4. Final version of paper due on April 30.
Evaporative Cooling

Remove most energetic (hottest) atoms

Wait for atoms to rethermalize among themselves

Wait time is given by the elastic collision rate $k_{\text{elastic}} = n \sigma v$

**Macro-trap:** low initial density, evaporation time $\sim 10-30$ s.

**Micro-trap:** high initial density, evaporation time $\sim 1-2$ s.
Evaporative Cooling

Remove most energetic (hottest) atoms

Wait for atoms to rethermalize among themselves

*Wait time* is given by the elastic collision rate \( k_{elastic} = n \sigma v \)

**Macro-trap:** low initial density, evaporation time \( \sim 10-30 \) s.

**Micro-trap:** high initial density, evaporation time \( \sim 1-2 \) s.
RF Evaporation

In a harmonic trap:

\[ E_{RF} = \hbar \omega \]

- **RF frequency** determines energy at which spin flip occurs.
- Sweep RF between 1 MHz and 30 MHz.
RF evaporation: dressed atom picture

$\hbar \Omega_{\text{rabi}} = \text{Atom-RF coupling}$
$h\Omega_{\text{rabi}} = \text{Atom-RF coupling}$

RF evaporation: dressed atom picture