Week #2 Problem Set
Due date: Friday, February 5, 2010.

First and Second Order Coherence

1. Sargent and Meystre, problem 1.15, p. 33.

2. Wiener-Khintchine Theorem: In class, we derived a formula for the Normalized Power Spectral Density, \(F(\omega) \), in terms of the first order correlation function, \(g^{(1)}(\tau) \). Derive an expression for \(g^{(1)}(\tau) \) in terms of \(F(\omega) \).

3. Write a 1 page essay (double-spaced) summarizing the Hanbury-Brown and Twiss paper and the associated letter by E. Purcell – you may choose to concentrate on one or two aspects of the papers rather than the entire papers.

Extra graduate student problem

4. Gaussian lineshape: Consider a gas of identical atoms that emit light at a resonant frequency of \(\omega_0 \) (when at rest). The atoms in the gas have a spread of velocities due to their finite temperature, \(T \), which leads to a spread in the resonant frequency of the atoms due to the Doppler effect. The probability for an atom to emit light at a frequency \(\omega \) close to \(\omega_0 \) in a given direction is then given by

\[
P(\omega) = \frac{1}{\sigma \sqrt{2\pi}} \exp\left(-\frac{1}{2} \frac{(\omega - \omega_0)^2}{\sigma^2}\right) \quad \text{with} \quad \sigma = \omega_0 \sqrt{\frac{kT}{mc^2}},
\]

where \(m \) is the mass of the atom, \(c \) is the speed of light, and \(k \) is Boltzmann's constant.

We will assume that the atom is excited by some mechanism, and we look at the radiated light in a given direction. The emitted electric field in this direction is then given by

\[
E(t) = E_0 \sum_{i=1}^{N} \exp(-i\omega_i t + i\phi_i)
\]

where the sum is over the \(N \) atoms in the gas and the \(\phi_i \) are random stationary phases.

a. Show that \(\left\langle E^*(t)E(t+\tau) \right\rangle = E_0^2 \sum_{i=1}^{N} \exp(-i\omega_i \tau) \).

b. Show that \(g^{(1)}(\tau) = \exp\left(-i\omega_0 \tau - \frac{1}{2} \sigma^2 \tau^2\right). \)