Multi-level atom

Consider an atom with: - $\mathrm{F}=1 / 2$ in ground level.

- $F^{\prime}=3 / 2$ in excited level.

Excited state: $\quad F^{\prime}=3 / 2$

Ground state: $\quad F=1 / 2$

Multi-level atom

Consider an atom with: - $\mathrm{F}=1 / 2$ in ground level.

- $F^{\prime}=3 / 2$ in excited level.

Excited state: $\quad F^{\prime}=3 / 2$

Proportional to $\mu_{\mathrm{eg}}{ }^{2}$ or Ω^{2}

$$
m_{F}=
$$

Ground state: $\quad F=1 / 2$

AC Stark Shift in Polarization Gradient Lattice

[figure adapted from Atomic Physics by C. Foot, Oxford U. Press (2006)]

AC Stark Shift in Polarization Gradient Lattice

Excited state: $\quad F^{\prime}=3 / 2$

Linear
Ground state: $\quad F=1 / 2$
Linear ...

Distance along standing wave, z
[figure adapted from Atomic Physics by C. Foot, Oxford U. Press (2006)]

Sisyphus Cooling

Sisyphus Cooling

Atoms that are excited at the top of a hill are most likely to decay to valley.

excited states, $\mathrm{F}^{\prime}=3 / 2$

Excited state: $\quad F^{\prime}=3 / 2$

$$
\text { Ground state: } \quad F=1 / 2
$$

ground states, $F=1 / 2$
$m_{F}=-1 / 2$
$m_{F}=+1 / 2$
position

Sisyphus Cooling

Atoms that are excited at the top of a hill are most likely to decay to valley.

excited states, $\mathrm{F}^{\prime}=3 / 2$

Ground state: $\quad F=1 / 2$

Atoms travel uphill most of the time
\rightarrow cooling

Cooling Force (Doppler + Sisyphus)

