PHYS 482-01 and 690-01: Quantum Optics & Atomics Practice problems

The Quantized Electromagnetic Field

1. Fock states

Consider the Fock state $|n\rangle_{k,s}$ with *n* excitations of the photon field with momentum *k* and polarization *s* in a volume V (in vacuum).

Compute the following quantities:

- a) Average electric field: $\langle \vec{E} \rangle =_{k,s} \langle n | \vec{E} | n \rangle_{k,s}$
- b) Variance of the electric field: $\Delta \vec{E}^2 =_{k,s} \langle n | \vec{E}^2 | n \rangle_{k,s} (\langle n | \vec{E} | n \rangle_{k,s})^2$
- c) Average photon number $\langle N \rangle =_{k,s} \langle n | N | n \rangle_{k,s}$ and photon number variance $\Delta N^2 =_{k,s} \langle n | N^2 | n \rangle_{k,s} - (\sum_{k,s} \langle n | N | n \rangle_{k,s})^2$

2. Coherent states I

Consider the coherent state $|\alpha\rangle_{k,s} = e^{-\frac{1}{2}|\alpha|^2} \sum_{n=0}^{\infty} \frac{\alpha^n}{\sqrt{n!}} |n\rangle_{k,s}$, where α is a complex number and $|n\rangle_{k,s}$ are the photon Fock states described in problem 1. Compute the following quantities:

- a) Average electric field: $\langle \vec{E} \rangle =_{k,s} \langle \alpha | \vec{E} | \alpha \rangle_{k,s}$
- b) Variance of the electric field: $\Delta \vec{E}^2 =_{k,s} \langle \alpha | \vec{E}^2 | \alpha \rangle_{k,s} (\langle \alpha | \vec{E} | \alpha \rangle_{k,s})^2$
- c) Average photon number $\langle N \rangle =_{k,s} \langle \alpha | N | \alpha \rangle_{k,s}$

and photon number variance $\Delta N^2 =_{k,s} \langle \alpha | N^2 | \alpha \rangle_{k,s} - (\langle \alpha | N | \alpha \rangle_{k,s})^2$

d) For $\alpha = 10$, calculate the mean photon number, the variance in the photon number, and the quantum uncertainty in the optical phase.

3. Coherent States II

Consider two coherent states $|\alpha\rangle$ and $|\beta\rangle$. Show that they are not orthogonal by proving the relation:

$$\langle \alpha | \beta \rangle = \exp \left[-\frac{1}{2} \left(\left| \alpha \right|^2 + \left| \beta \right|^2 - 2\alpha^* \beta \right) \right]$$