Physics 404 and 690-03: Intro to AMO Physics
Due date: Thursday, February 15, 2024

Problem Set \#2

Basic Review, Coherence, and Semi-Classical Atomic Physics

1. Intensity, electric field, and magnetic field of a laser
(a) Calculate the intensity, electric field, and magnetic field of a laser beam at 780 nm with 10 mW of power and a flat intensity distribution over a disk of $10 \mu \mathrm{~m}$ in diameter.
(b) Calculate the photon flux (photons/second) for the laser beam.

2. First and second order coherence

Consider a parallel light beam whose field contains a large number of contributions from plane waves with the same frequency and wavevector, but with a random distribution of amplitudes and phase angles.
(a) Calculate the first-order degree of temporal coherence $g^{(1)}(\tau)$ of this light field.
(b) Calculate second-order degree of temporal coherence $\mathrm{g}^{(2)}(\tau)$ of this light field.

Extra graduate student problem

3. Total cross-section of a semi-classical atom

Show that the on-resonance total scattering cross-section for a classical atom is given by:

$$
\sigma_{\text {classic,on-resonance }}=\frac{3}{2 \pi} \lambda^{2}
$$

where λ is the wavelength of incident on-resonance light.

