2nd Order Coherence

1. Degree of second order coherence
2. Classical view: Time-domain
3. Quantum view: Coincidence measurements
4. Thermal Light vs. Laser Light
5. Coherence of atomic sources

$\mathbf{g}^{(2)}(\tau)$
 $2^{\text {nd }}$ order correlation function

Definition:

$$
g^{(2)}(\tau)=\frac{\langle I(t) \cdot I(t+\tau\rangle}{\langle I(t)\rangle\langle I(t+\tau)\rangle}=\frac{\langle I(t) \cdot I(t+\tau\rangle}{\langle I(t)\rangle^{2}}
$$

It measures correlations in the intensity of the light, instead of correlations in the electric field.

Random Phase Chaotic Light Source (Lorentzian)

[computer simulation, from Quantum Theory of Light, by R. Loudon (2000)]

Gaussian Spectrum Chaotic Light Source

[computer simulation, from Quantum Theory of Light, by R. Loudon (2000)]

Quantum $\mathrm{g}^{(2)}(\tau)$: single-photon detection

If you can detect single photons (i.e. PMT or avalanche photodiode), then for very low light levels

$$
g^{(2)}(\tau)=\frac{\langle I(t) \cdot I(t+\tau\rangle}{\langle I(t)\rangle^{2}}=\frac{\left\langle n_{1}(t) \cdot n_{2}(t+\tau)\right\rangle}{\left\langle n_{1}(t)\right\rangle \cdot\left\langle n_{2}(t+\tau)\right\rangle}
$$

[figure adapted from Quantum Theory of Light, by R. Loudon (2000)]

Quantum $\mathrm{g}^{(2)}(\tau)$: single-photon detection

If you can detect single photons (i.e. PMT or avalanche photodiode), then for very low light levels

$$
g^{(2)}(\tau)=\frac{\langle I(t) \cdot I(t+\tau\rangle}{\langle I(t)\rangle^{2}}=\frac{\left\langle n_{1}(t) \cdot n_{2}(t+\tau)\right\rangle}{\left\langle n_{1}(t)\right\rangle \cdot\left\langle n_{2}(t+\tau)\right\rangle}
$$

[figure adapted from Quantum Theory of Light, by R. Loudon (2000)]

Thermal Photons

random classical particles

Thermal photons exhibit "bunching" at short correlation times

Laser light

Laser light exhibit NO "bunching".

Thermal Bosonic Atoms

Thermal bosonic atoms are statistically identical to thermal photons !!!
[figure from A. Öttl, S. Ritter, M. Köhl, T. Esslinger, Phys. Rev. Lett. 95, 090404 (2005)]

Coherent Bosonic Atoms (BEC)

In a Bose-Einstein Condensate (BEC) all the atoms are in the same state. It is the analog of a laser but with atoms (coherent matter waves).

Atoms in a BEC are statistically identical to laser photons !!!

