Example of AC Stark Shift:

- 10 mW of laser power.
- focused down to 10 $\mu\text{m}.$
- Detuning: $\delta = -2\pi \times 100$ GHz.

Recall

$$\Delta E = \frac{\hbar}{4} \frac{\Omega^2}{\delta} \quad \text{with} \quad \Omega = \frac{q_e \langle g | r | e \rangle \cdot E}{\hbar}$$

Example of AC Stark Shift:

- 10 mW of laser power.
- focused down to 10 $\mu\text{m}.$
- Detuning: $\delta = -2\pi \times 100$ GHz.

Recall

$$\Delta E = \frac{\hbar}{4} \frac{\Omega^2}{\delta} \quad \text{with} \quad \Omega = \frac{q_e \langle g | r | e \rangle \cdot E}{\hbar}$$

For an ⁸⁷Rb atom at 780.24 nm, $\langle g | r | e \rangle \approx 3 a_0$

Example of AC Stark Shift:

- 10 mW of laser power.
- focused down to 10 $\mu\text{m}.$
- Detuning: $\delta = -2\pi \times 100$ GHz.

For an ⁸⁷Rb atom at 780.24 nm, $\langle g | r | e \rangle \approx 3 a_0$

 \Rightarrow Intensity = 10⁸ W/m², Electric field = 2.7 × 10⁵ V/m

Recall

$$\Delta E = \frac{\hbar}{4} \frac{\Omega^2}{\delta} \quad \text{with} \quad \Omega = \frac{q_e \langle g | r | e \rangle \cdot E}{\hbar}$$

Example of AC Stark Shift:

- 10 mW of laser power.
- focused down to 10 $\mu\text{m}.$
- Detuning: $\delta = -2\pi \times 100$ GHz.

For an ⁸⁷Rb atom at 780.24 nm,
$$\langle g | r | e \rangle \approx 3 a_0$$

- \Rightarrow Intensity = 10⁸ W/m², Electric field = 2.7 × 10⁵ V/m
- $\Rightarrow \Omega = 6.6 \times 10^{10} \text{ rads/s, so } |\delta| >> |\Omega|$

Recall

$$\Delta E = \frac{\hbar}{4} \frac{\Omega^2}{\delta} \quad \text{with} \quad \Omega = \frac{q_e \langle g | r | e \rangle \cdot E}{\hbar}$$

Example of AC Stark Shift:

- 10 mW of laser power.
- focused down to 10 $\mu\text{m}.$
- Detuning: $\delta = -2\pi \times 100$ GHz.

For an ⁸⁷Rb atom at 780.24 nm, $\langle g | r | e \rangle \approx 3 a_0$

- \Rightarrow Intensity = 10⁸ W/m², Electric field = 2.7 × 10⁵ V/m
- $\Rightarrow \Omega = 6.6 \times 10^{10} \text{ rads/s, so } |\delta| >> |\Omega|$

Recall

$$\Delta E = \frac{\hbar}{4} \frac{\Omega^2}{\delta} \quad \text{with} \quad \Omega = \frac{q_e \langle g | r | e \rangle \cdot E}{\hbar}$$

$$|r|e \rangle \approx 3 a_0$$

$$\Delta E = -1.8 \times 10^{-25} \text{ J}$$

$$\Delta E = -1.8 \times 10^{-25} \text{ J}$$

$$\sim 10 \text{ mK } !!!$$

$$\Rightarrow \text{V} \sim 1.5 \text{ m/s}$$

Example of AC Stark Shift:

- 10 mW of laser power.
- focused down to 10 $\mu\text{m}.$
- Detuning: $\delta = -2\pi \times 100$ GHz.

For an ⁸⁷Rb atom at 780.24 nm, $\langle g | r | e \rangle \approx 3 a_0$

- \Rightarrow Intensity = 10⁸ W/m², Electric field = 2.7 × 10⁵ V/m
- $\Rightarrow \Omega = 6.6 \times 10^{10} \text{ rads/s, so } |\delta| >> |\Omega|$

$$\Delta E = -1.8 \times 10^{-25} \text{ J}$$

$$\sim 10 \text{ mK } !!!$$

$$\Rightarrow \text{V} \sim 1.5 \text{ m/s}$$

Example of AC Stark Shift:

- 10 mW of laser power.
- focused down to 10 $\mu\text{m}.$
- Detuning: $\delta = -2\pi \times 100$ GHz.

For an ⁸⁷Rb atom at 780.24 nm, $\langle g | r | e \rangle \approx 3 a_0$

$$\Rightarrow$$
 Intensity = 10⁸ W/m², Electric field = 2.7 × 10⁵ V/m

 $\Rightarrow \Omega = 6.6 \times 10^{10} \text{ rads/s, so } |\delta| >> |\Omega|$

$$\Delta E = -1.8 \times 10^{-25} \text{ J}$$

$$\sim 10 \text{ mK } !!!$$

$$\Rightarrow \text{V} \sim 1.5 \text{ m/s}$$

Atoms are trapped by focused laser light !!!

⁸⁷Rb dipole trap

Quasi-static Limit:

- 1 W of power.
- focused down to 100 $\mu\text{m}.$

<u>Atom: ⁸⁷Rb</u> DC polarizability: $\alpha = h \cdot 0.08 Hz / (\frac{V}{cm})^2$

 \Rightarrow Intensity ~ 10⁸ W/m², Electric field = 2.7 × 10³ V/cm

Ultracold atoms are trapped by focused laser light !!!

Optical Tweezers

The classical picture of dipole trapping is given by ray optics:

Sphere attracted to region of high intensity.

Optical Tweezers

The classical picture of dipole trapping is given by ray optics:

Sphere attracted to region of high intensity.

Laser photons

Atom + Laser Field (dressed atom picture), δ =0

Laser photons

Atom + Laser Field (dressed atom picture), δ =0

Atom + Laser Field (dressed atom picture), δ =0

+ add-in atom-laser interaction energy

