Classical Monte Carlo
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... you can calculate anything with dice.
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Additional considerations:

= molecule re-thermalize on
each wall bounce.

»= Molecule ejected from wall
with a cosine distribution.

... quite difficult to do analytically.

Solution: simulate many individual molecular
trajectories and look at statistics (<n_>, G,,)

... fairly simple and quick on a computer.




Definition

The Monte Carlo method is any numerical method in which
the solution is obtained by averaging over many
probabilistic simulation instances.
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Example: Numerical Integration

The Monte Carlo method is frequently used to evaluate difficult integrals

(in many dimensions):

b
‘calculus” average: (f (X)) = [ f(x)dx

1
b—a

1 N
“statistical” average: < f (X)>[a,b];statistical = N Z F(x)

=1
Xi E[a,b]
X

\

X;=probabilistic variable

I.e. choose x;‘s randomly on [a,b] with a
uniform probability distribution.
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O ¢ (x |
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where aﬁ(x),N:ﬁ[;f(xi)2_N<f(x)>[2a'b],Nj Nizl:(f(x) (f(x)))°

=standard deviation of simulations



Advantages

» Monte Carlo simulations are generally easy to
formulate and set-up.

» Monte Carlo simulations are generally faster than
other numerical methods, especially for problems in a
large number of dimensions.
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