Classical Monte Carlo

Simulations

... you can calculate anything with dice.

Introduction

Calculate ...
$>$ the number of bounces (mean and variance)
$>$ and time (mean and variance)
for a gas molecule at temperature T to leave this box:

Introduction

Calculate ...
$>$ the number of bounces (mean and variance)
$>$ and time (mean and variance)
for a gas molecule at temperature T to leave this box:

Additional considerations:

- molecule re-thermalize on each wall bounce.
- Molecule ejected from wall with a cosine distribution.

Introduction

Calculate ...
$>$ the number of bounces (mean and variance)
$>$ and time (mean and variance)
for a gas molecule at temperature T to leave this box:

Additional considerations:

- molecule re-thermalize on each wall bounce.
- Molecule ejected from wall with a cosine distribution.
... quite difficult to do analytically.

Introduction

Calculate ...
$>$ the number of bounces (mean and variance)
$>$ and time (mean and variance)
for a gas molecule at temperature T to leave this box:

Additional considerations:

- molecule re-thermalize on each wall bounce.
- Molecule ejected from wall with a cosine distribution.
... quite difficult to do analytically.

Solution: simulate many individual molecular trajectories and look at statistics $\left.\left(<\mathrm{n}_{\text {exit }}\right\rangle, \sigma_{\mathrm{n}}\right)$

Introduction

Calculate ...
$>$ the number of bounces (mean and variance)
$>$ and time (mean and variance)
for a gas molecule at temperature T to leave this box:

Additional considerations:

- molecule re-thermalize on each wall bounce.
- Molecule ejected from wall with a cosine distribution.
... quite difficult to do analytically.

Solution: simulate many individual molecular trajectories and look at statistics ($<\mathrm{n}_{\text {exit }}>, \sigma_{\mathrm{n}}$)
... fairly simple and quick on a computer.

Definition

The Monte Carlo method is any numerical method in which the solution is obtained by averaging over many probabilistic simulation instances.

Example: Numerical Integration

The Monte Carlo method is frequently used to evaluate difficult integrals (in many dimensions):

$$
\text { "calculus" average: } \quad\langle f(x)\rangle_{[a, b] ; \text { calculus }}=\frac{1}{b-a} \int_{a}^{b} f(x) d x
$$

Example: Numerical Integration

The Monte Carlo method is frequently used to evaluate difficult integrals (in many dimensions):

$$
\text { "calculus" average: }\langle f(x)\rangle_{[a, b] ; \text { calculus }}=\frac{1}{b-a} \int_{a}^{b} f(x) d x
$$

$$
\text { "statistical" average: }\langle f(x)\rangle_{[a, b] ; \text {; statistical }}=\frac{1}{N} \sum_{\substack{i=1 \\ x_{i} \in[a, b]}}^{N} f\left(x_{i}\right)
$$

Example: Numerical Integration

The Monte Carlo method is frequently used to evaluate difficult integrals (in many dimensions):

$$
\text { "calculus" average: }\langle f(x)\rangle_{[a, b] ; \text { calculus }}=\frac{1}{b-a} \int_{a}^{b} f(x) d x
$$

"statistical" average: $\langle f(x)\rangle_{[a, b] ; \text { statistical }}=\frac{1}{N} \sum_{\substack{i=1 \\ x_{i} \in[a, b]}}^{N} f\left(x_{i}\right)$
$x_{i}=$ probabilistic variable
i.e. choose $x_{i}{ }^{\text {s }}$ s randomly on $[\mathrm{a}, \mathrm{b}]$ with a uniform probability distribution.

Theorem

If $f(x)$ is well behaved on $[a, b]$ (i.e. does not diverge), then in the limit of $N \rightarrow \infty$, the following is true (in the probabilistic sense)

$$
\langle f(x)\rangle_{[a, b] ; \text { calculus }}=\langle f(x)\rangle_{[a, b] ; \text { statistical }, N} \pm \frac{\sigma_{f(x), N}}{\sqrt{N}}
$$

Theorem

If $f(x)$ is well behaved on $[a, b]$ (i.e. does not diverge), then in the limit of $N \rightarrow \infty$, the following is true (in the probabilistic sense)

$$
\langle f(x)\rangle_{[a, b] ; \text { calculus }}=\langle f(x)\rangle_{[a, b] ; \text { statistical }, N} \pm \frac{\sigma_{f(x), N}}{\sqrt{N}}
$$

So, $\int_{a}^{b} f(x) d x=(b-a) \cdot\langle f(x)\rangle_{[a, b] ; \text { statistical, },} \pm(b-a) \cdot \frac{\sigma_{f(x), N}}{\sqrt{N}}$

Theorem

If $f(x)$ is well behaved on $[a, b]$ (i.e. does not diverge), then in the limit of $N \rightarrow \infty$, the following is true (in the probabilistic sense)

$$
\langle f(x)\rangle_{[a, b] ; \text { calculus }}=\langle f(x)\rangle_{[a, b] ; \text { statistical }, N} \pm \frac{\sigma_{f(x), N}}{\sqrt{N}}
$$

So, $\int_{a}^{b} f(x) d x=(b-a) \cdot\langle f(x)\rangle_{[a, b] ; \text { statistical }, N} \pm(b-a) \cdot \frac{\sigma_{f(x), N}}{\sqrt{N}}$
where $\quad \sigma_{f(x), N}^{2}=\frac{1}{N-1}\left(\sum_{i=1}^{N} f\left(x_{i}\right)^{2}-N\langle f(x)\rangle_{[a, b], N}^{2}\right)=\frac{1}{N-1} \sum_{i=1}^{N}\left(f\left(x_{i}\right)-\langle f(x)\rangle\right)^{2}$
$=$ standard deviation of simulations

Advantages

> Monte Carlo simulations are generally easy to formulate and set-up.
> Monte Carlo simulations are generally faster than other numerical methods, especially for problems in a large number of dimensions.

