Problem set #1

1.

Measuring B Let \mathbb{F}_1 and \mathbb{F}_2 be the instantaneous forces that act on a particle with charge q when it moves through a magnetic field $\mathbb{B}(\mathbf{r})$ with velocities \mathbf{v}_1 and \mathbf{v}_2 , respectively. Without choosing a coordinate system, show that $\mathbb{B}(\mathbf{r})$ can be determined from the observables $\mathbf{v}_1 \times \mathbb{F}_1$ and $\mathbf{v}_2 \times \mathbb{F}_2$ if \mathbf{v}_1 and \mathbf{v}_2 are appropriately oriented.

2.

The Coulomb and Biot-Savart Laws The electric and magnetic fields for time-independent distributions of charge and current which go to zero at infinity are

$$\mathbf{E}(\mathbf{r}) = \frac{1}{4\pi\epsilon_0} \int d^3r' \, \rho(\mathbf{r}') \frac{\mathbf{r} - \mathbf{r}'}{|\mathbf{r} - \mathbf{r}'|^3} \qquad \qquad \mathbf{B}(\mathbf{r}) = \frac{\mu_0}{4\pi} \int d^3r' \mathbf{j}(\mathbf{r}') \times \frac{\mathbf{r} - \mathbf{r}'}{|\mathbf{r} - \mathbf{r}'|^3}.$$

- (a) Calculate $\nabla \cdot \mathbb{E}$ and $\nabla \times \mathbb{E}$.
- (b) Calculate $\nabla \cdot \mathbf{B}$ and $\nabla \times \mathbf{B}$. The curl calculation exploits the continuity equation for this situation.

3.

Prelude to Electromagnetic Angular Momentum A particle with charge q is confined to the x-y plane and sits at rest somewhere away from the origin until t=0. At that moment, a magnetic field $\mathbf{B}(x,y)=\Phi\delta(x)\delta(y)\hat{\mathbf{z}}$ turns on with a value of Φ which increases at a constant rate from zero. During the subsequent motion of the particle, show that the quantity $\mathbf{L}+q\Phi/2\pi$ is a constant of the motion where \mathbf{L} is the mechanical angular momentum of the particle with respect to the origin and $\Phi=\Phi\hat{\mathbf{z}}$.

4.

Rotation of Free Fields in Vacuum Let θ be a parameter and define "new" electric and magnetic field vectors as linear combinations of the usual electric and magnetic field vectors:

$$\mathbf{E}' = \mathbf{E}\cos\theta + c\mathbf{B}\sin\theta$$
$$c\mathbf{B}' = -\mathbf{E}\sin\theta + c\mathbf{B}\cos\theta.$$

- (a) Show that \mathbf{E}' and \mathbf{B}' satisfy the Maxwell equations without sources ($\rho = \mathbf{j} = 0$) if \mathbf{E} and \mathbf{B} satisfy these equations.
- (b) Discuss the implications of this result for source-free solutions of the Maxwell equations where $\mathbf{E} \perp \mathbf{B}$ everywhere in space.

5.

Lorenz Gauge Forever

- (a) Suppose φ_L and \mathbf{A}_L satisfy the Lorenz gauge constraint. What equation must Λ satisfy to ensure that $\mathbf{A}' = \mathbf{A}_L \nabla \Lambda$ and $\varphi' = \varphi_L + \dot{\Lambda}$ are Lorenz gauge potentials also?
- (b) What equation must Λ satisfy to ensure that φ' satisfies the same inhomogeneous wave equation as φ_L ? Show that the same equation for Λ' also ensures that \mathbf{A}' satisfies the same inhomogeneous wave equation as \mathbf{A}_L .