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The diatomic linear chain of masses coupled by harmonic springs is a textbook model for vibrational
normal modes~phonons! in crystals. In addition to propagating acoustic and optic branches, this
model is known to support a ‘‘gap mode’’ localized at the surface, provided the atom at the surface
has light rather than heavy mass. An elementary argument is given which explains this mode and
provides values for the frequency and localization length. By reinterpreting this mode in different
ways, we obtain the frequency and localization length for three other interesting modes:~1! the
surface vibrational mode of a light mass impurity at the surface of a monatomic chain;~2! the
localized vibrational mode of a stacking fault in a diatomic chain; and~3! the localized vibrational
mode of a light mass impurity in a monatomic chain. ©2000 American Association of Physics Teachers.
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I. INTRODUCTION

Unlike molecules which have discrete vibrational freque
cies, crystals have a continuous spectrum of vibrations wh
can propagate as traveling waves.1–3 This fact causes crystal
to be much better heat conductors than glasses or liqu
Sometimes the spectrum is interrupted by gaps where
propagating normal modes occur. Other interesting beha
happens at frequencies inside the gap, such as localized~non-
propagating! normal modes associated with defects and s
faces. The text by Ziman4 has a good discussion. A visua
ization of surface modes on the~100! surface of Cu is on the
website of Ch. Wo¨ll, Ruhr-Universität Bochum.5 The present
paper shows how this happens for some particular case
one-dimensional crystals, or linear chains of atoms. O
treatment uses only classical mechanics, and gives prope
~frequency and displacement pattern! rigorously by pictorial
arguments with no higher algebra.

The surface phonon provides the simplest example
wave localization, an effect which occurs in many branch
of physics. Analogous phenomena are found in the quan
treatment of electrons in single-particle approximation1,2

and in the new field of ‘‘photonic band-gap systems.’’6 This
paper reports a simple way of understanding the surface
non on the diatomic linear chain. The model is then exten
and reinterpreted to give simple explanations of some o
localized modes.

II. DIATOMIC MOLECULE

A diatomic molecule has a single vibrational ‘‘norm
mode.’’ Even though the restoring force of atom 1 on atom
has in reality a complicated quantum-mechanical origin,
small displacements away from equilibrium it can always
well approximated by a spring obeying Hooke’s law with
spring constantK. Using standard physics of the two-bod
problem,7 if the two atoms have massesMH andML ~H and
L are for heavy and light!, the squared oscillation frequenc
v2 is K/M red, where M red is the ‘‘reduced mass’’
MLMH /(ML1MH).
228 Am. J. Phys.68 ~3!, March 2000
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III. PERFECT INFINITE CHAINS

A crystalline solid is a very large molecule, with a co
tinuous spectrum~or band! of vibrational frequencies. Solids
can also be modeled by masses connected to each oth
springs. A one-dimensional chain of masses is often stud
not because it is found in nature, but because the mathe
ics is simple and can be generalized to more realistic th
dimensional arrangements. For a large enough collectio
atoms, most of the vibrational normal modes are classified
‘‘bulk’’ normal modes, which means they are essentia
identical to those of a hypothetical infinite sample with
boundaries. Each ‘‘bulk’’ normal mode has a pattern
atomic displacements which extends throughout the syst
Similar to the normal modes of a vibrating string, these
sine and cosine standing waves. Alternately, one can
linear combinations of sines and cosines to give an equ
lent basis of left- and right-going traveling waves. For t
case of all masses equal toM0 , the l th atom~located atRl

5 la) has a displacementA sin(kRl2vkt) in a right-going
traveling wave. The corresponding squared frequency
(4K/M0)sin2(ka/2). There are as many such solutions~N! as
there are atoms in the chain, namely solutions for eachk in
the range (2p/a,p/a). This is derived in many texts.1–3,8

For N→` the spectrum is continuous between the minimu
squared frequency of zero and the maximum ofvmax

2

54K/M0. A particularly original discussion is given b
Martinez.9

The vibrational spectrum of a real material sometimes
a gap, an interval of frequencies where there are no trave
wave solutions. A simple model illustrating this is the ‘‘d
atomic chain,’’ an infinite chain of alternating mass
ML ,MH . The algebra, which is more complicated than t
monatomic chain, is also given in texts.1,3 The dispersion
curve for vk

2 is given in Fig. 1. There are now two
‘‘branches,’’ labeled acoustic and optic, and a gap. Exac
in the middle of the gap, the surface may induce alocalized
vibrational normal mode, with amplitude which falls exp
nentially @}exp(2R/j)# with distanceR into the bulk.

Before discussing this, we sharpen our understanding w
a quantitative interpretation of the four special bulk mod
228© 2000 American Association of Physics Teachers
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indicated by circles in Fig. 1. The frequencies of these s
cial modes can be understood without the algebra neede
find the frequencies of the modes at generalk vectors.

IV. SPECIAL BULK MODES

The four special modes circled in Fig. 1 have the sim
vibrational patterns shown in Fig. 2. First, why are the
patterns ‘‘normal modes’’? If we take, as initial condition
the velocities of all atoms to be zero and the positions to
as shown in Fig. 2, then Newton’s laws have simple, a
perhaps even obvious solutions: The pattern is preser
and oscillates in time as cos(vt) for some special choice o
v. This is thedefinitionof a normal mode. Second, what
the corresponding frequency of oscillation? This can be
swered by careful consideration of forces and masses.

Fig. 1. Dispersion of squared frequency~in units v0
25K/M red) vs wave

vector k for the diatomic chain. The gap is proportional to (MH

2ML)/(MH1ML), and is drawn for the caseMH52ML . The distance
between atoms isa. The dashed line shows the position of the surface mo

Fig. 2. The diatomic chain, the special bulk modes a, b with wavelen
l5` and wave vectork50, the special bulk modes c, d with waveleng
l54a and k5p/2a ~all shown circled in Fig. 1!, and the gap mode e
confined at the surface when a light atom terminates the chain. In pict
a–d, the chain is infinite; by contrast, in picture e, the light atom at the
is the surface atom, with no spring acting to its left. The brackets indic
pairs of atoms which move without altering the length of the bond betw
them.
229 Am. J. Phys., Vol. 68, No. 3, March 2000
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Mode a: This is the simplest mode with all atoms havin
the same displacement. This has infinite wavelength~zero
wave vector!, no stretch of any spring, and therefore ze
restoring force andv50.

Mode b: This has oppositely directed displacements
adjacent atoms. Each unit cell of the crystal has the sa
displacement pattern. Therefore the wavelength is infin
and the wave vector is zero. The displacements in mode b
such thatuL ~the displacement of the light atom! is propor-
tional to MH , and similarlyuH is proportional toML . Thus
the center of mass of each unit cell is fixed. The mode
almost the same as in a diatomic molecule, except each a
has two springs attached, one stretched and the other c
pressed by the same amount. Therefore, when released
rest, each pair of atoms oscillates with fixed center of m
but with twice the restoring force of an isolated diatom
molecule, i.e.,v252K/M red. This is the highest frequenc
normal mode in the spectrum.

Mode c: This has light atoms stationary and heavy ato
moving in an alternating pattern. The light atoms feel eq
and opposite forces which cancel, while the heavy atoms
repulsive and attractive forces which add. This pattern a
oscillates in time, with squared frequencyv252K/MH .

Mode d: This is the same as mode c except heavy and li
atoms are interchanged, making the squared frequency e
to 2K/ML . Modes c and d have wavelength 4a and wave
vector p/2a. All other normal modes of the infinite crysta
are more complicated and have frequencies which lie
smooth curves connecting these four modes.

V. SURFACE MODE IN THE GAP

Modes which are confined to the surface region norma
must have frequencies which lie outside the ‘‘bulk’’ band
Discussions of such modes are given in texts on surf
physics10–14 and measurements are cataloged by Kress
de Wette.15 We have discovered a very simple explanation
the fact16 that a ‘‘gap mode’’ confined to the surface occu
in the diatomic chain if the endmost atom is a light atom

Consider mode e, which like mode b has pairs of ato
vibrating with fixed center of mass. However, adjacentpairs
vibrate in such a way that the connecting spring is n
stretched. Thus each pair experiences no force from
other atom and is decoupled from the rest of the chain. T
resulting decoupled pairs oscillate withv25K/M red as for
isolated diatomic molecules. Since all pairs have the sa
frequency, this is a stable normal mode. The frequency
exactly in the middle of the gap of the squared frequen
spectrum@K/M red5(1/2)(2K/ML12K/MH)#. In order to
be decoupled, the heavy atom of a given pair, and the a
cent light atom of the next pair deeper into the bulk, mu
have the same displacement, smaller byML /MH ~and with
opposite sign! than the displacement of the previous lig
atom closer to the surface, in order to conserve cente
mass position. Since adjacent pairs have displacement r
2ML /MH , the nth pair has amplitude proportional t
(2ML /MH)n5(21)n exp(2n ln(MH /ML)). This is an expo-
nential decay exp(22na/j) with decay length j
52a/ ln(MH /ML). If the surface atom had been a hea
atom, this mode would have been exponentially grow
rather than decaying, which is not allowed for a norm
mode. Mode e was first found by Wallis16 in an elegant
calculation of the spectrum of finite chains. Our simple
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gument is not~to our knowledge! in the literature. A ‘‘stan-
dard’’ derivation is given in the text by Cottam and Tilley.12

VI. SURFACE MODES OF THREE-DIMENSIONAL
CRYSTALS

Mode e is directly related to abranch of surface normal
modes of higher-dimensional diatomic crystals. A tw
dimensional version is shown in Fig. 3. Various types
surfaces are possible for such crystals. If cut perpendicula
a conventionalx̂ or ŷ axis shown in Fig. 3 by dashed line
the surface contains equal numbers ofA and B ions, and is
referred to as ‘‘nonpolar.’’ By contrast, the surface shown
a ‘‘polar surface’’ with a layer of light atoms exposed an
layers of heavy and light atoms alternating underneath. Th
is a vibrational normal mode in which eachlayer oscillates
perpendicular to the surface~as indicated by arrows! and
which is localized at the surface. Of course, in real crys
the forces extend beyond first neighbors, so the displacem
ratio (2ML /MH) may not be exactly obeyed and th
squared frequency may not lie exactly at mid-gap, but
actual behavior will mimic reasonably well the idealize
one-dimensional example of Sec. V.

There is actually not just one mode of this type, bu
branch of such modes, with displacement patterns sinus
dally modulated along the surface. The one depicted in Fi
has the surface atoms ‘‘a,’’ ‘‘b,’’ ‘‘c,’’ all moving in phase
corresponding to an infinite wavelength, or zero wave vec
parallel to the surface. The other extreme case of modula
is when atoms along the surface are completely out of ph
when atom ‘‘a’’ moves down, atom ‘‘b’’ moves up, and s
forth, corresponding to a wavelengthl52&a in the plane
of the surface. Thus we anticipate a branch of surface e
tations with wave vectors lying in the plane of the surface
order for such a mode to be exponentially localized in
surface region, the frequency of oscillation must lie in a g
where there are no corresponding bulk normal modes w
the same components of wave vector in the plane of
surface. A gap is almost certain to occur for the case of z
wave vector, but at increasing wave vectors the gap m
disappear, and the mode ceases to be localized near the
face.

Dimension two or three also opens new possibilities l
directly related to one-dimensional models, such as sur

Fig. 3. ‘‘Polar’’ surface of a diatomic crystal in two dimensions. This is
two-dimensional analog of the ‘‘~111!’’ surface of crystals with the ‘‘rock-
salt’’ ~NaCl! structure. A square conventional unit cell is shown as das
lines parallel to conventionalx̂ and ŷ axes. There are two possible termin
tions of such crystals, ones which expose planes of light atoms as show
open circles, and ones which expose planes of heavy atoms, shown as
circles. Since the heavy and light atoms have opposite ionic charges,
surfaces have a surface dipole and are called polar.
230 Am. J. Phys., Vol. 68, No. 3, March 2000
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normal modes with displacements in the plane of the surfa
Many branches of surface normal modes have been seen
perimentally by scattering experiments. Unfortunately
have not been able to locate in the literature any observa
of the simple mode illustrated in Fig. 3. This is perha
because polar surfaces are relatively unstable and har
create and work with.

VII. IMPURITY ATOM ON THE SURFACE

Another known result is that a surface mode appe
above the bulk frequency spectrum for a monatomic cha
provided the atom on the surface is lighter than the rest b
least a factor of 2. This can be proven by a reinterpretation
the previous construction. For mode e in Fig. 2, let the t
atoms connected by the unstretched spring be reinterpr
as a single atom of massM05MH1ML . Then the model
has new interior atoms all with massM0 , but a surface im-
purity atom with massM imp5ML,0.5M0 . The surface
mode e still solves Newton’s laws withvS

25K/M red and
M red5MLMH /(ML1MH). In terms of the new variables
M imp and M0 the reduced massM red is M5M imp(M0

2M imp)/M0 . The frequencyvS
2 lies above the top of the

bulk band (vmax
2 54K/M0) if M0.2M imp , and merges into

the bulk band forM0<2M imp . This result seems also t
have been first discovered by Wallis.17 A ‘‘standard’’ proof
of this result is in the book by Desjonque`res and Spanjaard.11

VIII. LOCALIZED GAP MODE OF A STACKING
FAULT

The gap mode e of Fig. 2 generates a corresponding m
of a defective bulk crystal, shown in Fig. 4. This mode d
cays exponentially in both directions away from the center
symmetry. This center lies in the middle of a ‘‘stackin
fault’’ where two light-mass atoms have been put adjacen
each other. It is a one-dimensional version of a planar de
which occurs in real three-dimensional crystals. T
quantum-mechanical force between two light-mass ato
differs from the force which binds the atoms of unlike ma
Therefore, we must expect that the separationa8 of the light-
mass atoms will differ from the equilibrium separationa of
unlike atoms, and that the force constantK8 between these
atoms will differ from the constantK occurring elsewhere
Notice that for the special displacement pattern of Fig.
there is no force between the adjacent light atoms, so
values ofa8 andK8 are irrelevant; the squared frequency
the normal mode is exactly the same as the surface mode
Fig. 2, and is pinned at midgap.

The stacking fault is a simple example of a ‘‘topologic
defect,’’ that is, a defect which cannot be transformed aw
by any local change. As far as we know, the midgap norm
mode of vibration found here for the stacking fault has n

d

by
sed
ch

Fig. 4. Localized normal mode of vibration of the diatomic chain with
stacking fault, obtained from mode e of Fig. 2 by reflecting the lattice a
assigningu(2 l )5u( l ).
230Allen, Aubin, and Doak
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previously been discussed in the literature. However, a c
analog is the ‘‘topological soliton’’ found at midgap in th
electronic spectrum of the ‘‘Su–Schrieffer–Heege
model18 for polyacetylene with a topological defect in th
pattern of dimerization of carbon–carbon bonds along
chain.

IX. LOCALIZED VIBRATION OF A LIGHT MASS
IMPURITY IN A MONATOMIC CHAIN

Suppose an impurity of massM imp,M0 is substituted into
a monatomic chain of massM0 with no change in force
constants. Define the fractional mass deficit to bee5(M0

2M imp)/M0.0. It is known that this system supports a l
calized mode whose frequency ‘‘splits off’’ above the fr
quencyvmax of the uppermost bulk mode. Specifically, th
mode has squared frequencyvmax

2 /(12e2) and is localized
around the impurity with localization lengtha/ ln((11e)/(1
2e)). The earliest presentation of this mode known to us
by Montroll and Potts.19 The topic of localized modes in
solids had been given a systematic formulation in three
lier papers by Lifshits, available only in Russian.20 A text-
book derivation is given by Miha´ly and Martin,21 and a nice
qualitative discussion is given by Harrison.22

These results follow rigorously by reinterpretation of F
4. Simply regard each pair of co-moving atoms as a sin
atom whose mass is the sum of the two shown in the fig
Thus M0 is MH1ML , M imp is 2ML , and the new lattice
constanta is twice the previous distancea. When the impu-
rity mass is heavier than the host mass, there is no long
split-off bound state, but instead a ‘‘resonance’’ within t
bulk band.

In three-dimensional crystals the occurrence of a vib
tional bound state requires a minimum mass deficite which
is model dependent, whereas our one-dimensional~1D! ex-
ample has a bound state for arbitrarily small mass defi
This is a classical discrete-system analog of the continu
quantum-mechanical theorem that an attractive well alw
has a bound state in a 1D one-electron problem~and also in
two dimensions! but requires a critical well-depth in thre
dimensions.23 For the impurity on the surface, however, w
saw that even in one dimension there is a critical mass de
of 1/2. The quantum analog is that if the well is at the ed
of a 1D half space~the other half of the space is impenetrab
because of an infinite potential!, then there is a critical wel
depth, equal to the well depth at which the second bo
state appears for the symmetric well in the full 1D space

X. SUMMARY

Two simple surface phonons and two simple bound de
modes in one-dimensional lattices have been quantitati
231 Am. J. Phys., Vol. 68, No. 3, March 2000
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explained by pictorial construction and elementary phys
of the two-body problem. This is certainly not a comple
catalog of interesting localized modes, but we think th
these modes can serve as useful pedagogical models for
nomena in several branches in physics.
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