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The diatomic linear chain of masses coupled by harmonic springs is a textbook model for vibrational
normal modegphonon$ in crystals. In addition to propagating acoustic and optic branches, this
model is known to support a “gap mode” localized at the surface, provided the atom at the surface
has light rather than heavy mass. An elementary argument is given which explains this mode and
provides values for the frequency and localization length. By reinterpreting this mode in different
ways, we obtain the frequency and localization length for three other interesting niapése
surface vibrational mode of a light mass impurity at the surface of a monatomic d¢Baithe
localized vibrational mode of a stacking fault in a diatomic chain; @)dhe localized vibrational

mode of a light mass impurity in @ monatomic chain. 2@00 American Association of Physics Teachers.

[. INTRODUCTION IIl. PERFECT INFINITE CHAINS

Unlike molecules which have discrete vibrational frequen- A crystalline solid is a very large molecule, with a con-
cies, crystals have a continuous spectrum of vibrations whichinuous spectrunfor band of vibrational frequencies. Solids
can propagate as traveling wavesThis fact causes crystals can also be modeled by masses connected to each other by
to be much better heat conductors than glasses or liquidgprings. A one-dimensional chain of masses is often studied,
Sometimes the spectrum is interrupted by gaps where ngot because it is found in nature, but because the mathemat-
propagating normal modes occur. Other interesting behaviges is simple and can be generalized to more realistic three-
happens at frequencies inside the gap, such as locatioed  gimensional arrangements. For a large enough collection of
propagating normal modes associated with defects and surztoms, most of the vibrational normal modes are classified as
faces. The text by Zimdrhas a good discussion. A visual- «hyjk" normal modes, which means they are essentially
ization of surface modes on ti200) surface of Cuis on the jgentical to those of a hypothetical infinite sample with no
website of Ch. Wb, Ruhr-Universita Bochum?® The present boundaries. Each “bulk” normal mode has a pattern of
paper shows how this happens for some particular cases gfomic displacements which extends throughout the system.
one-dimensional crystals, or linear chains of atoms. OuUkjmilar to the normal modes of a vibrating string, these are
treatment uses only classical mechanics, and gives propertigge and cosine standing waves. Alternately, one can use
(frequency and displacement patterigorously by pictorial  |inear combinations of sines and cosines to give an equiva-
arguments with no higher algebra. lent basis of left- and right-going traveling waves. For the

The surface phonon provides the simplest example Of,qe of 4) masses equal iy, the Ith atom(located atR,
wave localization, an effect which occurs in many branches

of physics. Analogous phenomena are found in the quantur{?la)l.has a dispﬁ}cemerA Sin(kﬁ._“’kt) in adrigfht—going .
treatment of electrons in single-particle approximatfidn, raveling wave. € corresponding squared Irequency IS

and in the new field of “photonic band-gap system$This (4K/M0)sm2(ka/2_). There are as many such solutigh as
paper reports a simple way of understanding the surface phd2€re are atoms in the chain, namely solutions for d‘_ig*;
non on the diatomic linear chain. The model is then extendeth® range ¢ m/a,m/a). This is derived in many tex{s:>

and reinterpreted to give simple explanations of some otheror N—c the spectrum is continuous between the minimum

localized modes. squared frequency of zero and the maximum of,,
=4K/M,. A particularly original discussion is given by
Martinez?®
The vibrational spectrum of a real material sometimes has
II. DIATOMIC MOLECULE a gap, an interval of frequencies where there are no traveling

wave solutions. A simple model illustrating this is the “di-

A diatomic molecule has a single vibrational “normal atomic chain,” an infinite chain of alternating masses
mode.” Even though the restoring force of atom 1 on atom 2M,M,. The algebra, which is more complicated than the
has in reality a complicated quantum-mechanical origin, formonatomic chain, is also given in text3.The dispersion
small displacements away from equilibrium it can always becurve for wﬁ is given in Fig. 1. There are now two
well approximated by a spring obeying Hooke’s law with a“pranches,” labeled acoustic and optic, and a gap. Exactly
spring constanK. Using standard physics of the two-body in the middle of the gap, the surface may indudeaalized
problem! if the two atoms have mass&b, andM (H and  vibrational normal mode, with amplitude which falls expo-
L are for heavy and light the squared oscillation frequency nentially [ <exp(—R/£)] with distanceR into the bulk.
®? is K/Mqg, where M.y is the ‘“reduced mass” Before discussing this, we sharpen our understanding with
M My/ (M +My). a quantitative interpretation of the four special bulk modes
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2@ Mode a This is the simplest mode with all atoms having
b optic the same displacement. This has i_nfinite wavelergtro
wave vectoy, no stretch of any spring, and therefore zero
" d restoring force and»=0.
) Mode b This has oppositely directed displacements for
I adjacent atoms. Each unit cell of the crystal has the same
’7:1 __________________ displacement pattern. Therefore the wavelength is infinite
8 gap and the wave vector is zero. The displacements in mode b are
g C >l such thatu, (the displacement of the light atgns propor-
tional toMy, and similarlyuy is proportional toM . Thus
the center of mass of each unit cell is fixed. The mode is
almost the same as in a diatomic molecule, except each atom
a acoustic has two springs attached, one stretched and the other com-
OCO/ pressed by the same amount. Therefore, when released from
n/2a rest, each pair of atoms oscillates with fixed center of mass
k=2m/A but with twice the restoring force of an isolated diatomic

_ o o, molecule, i.e.w?=2K/M 4. This is the highest frequency
Fig. 1. Dispersion of squared frequen@n units wg=K/My Vs wave

oA : . ; normal mode in the spectrum.
vector k for the diatomic chain. The gap is proportional tdv g Mod This h liaht at tati dh t
-M)/(My+M,), and is drawn for the caskl;=2M . The distance ode ¢ IS has light aloms stationary an eavy aloms

between atoms ia. The dashed line shows the position of the surface mode MOVING in an alternating pattern. The light atoms feel equal
and opposite forces which cancel, while the heavy atoms feel
repulsive and attractive forces which add. This pattern also

indicated by circles in Fig. 1. The frequencies of these speescillates in time, with squared frequeney=2K/My.

cial modes can be understood without the algebra needed to Mode d This is the same as mode c except heavy and light

find the frequencies of the modes at gend&rakctors. atoms are interchanged, making the squared frequency equal
to 2K/M_ . Modes ¢ and d have wavelengtla 4nd wave
IV. SPECIAL BULK MODES vector 7r/2a. All other normal modes of the infinite crystal

] ) o ] are more complicated and have frequencies which lie on
vibrational patterns shown in Fig. 2. First, why are these

patterns “normal modes”? If we take, as initial conditions,
the velocities of all atoms to be zero and the positions to b&/. SURFACE MODE IN THE GAP

as shown in Fig. 2, then Newton’s laws have simple, and . ' .
perhaps even obvious solutions: The pattern is preserved Modes which are confined to the surface region normally

and oscillates in time as caaf} for some special choice of must have frequencies which lie outside the “bulk” bands.

This is thedefinition of | mod pS d what i Discussions of such modes are given in texts on surface
@. TNIS IS thedetiniion of a normal mode. second, what IS, jcd0-14 ang measurements are cataloged by Kress and
the corresponding frequency of oscillation? This can be an

db ful derati ft q de Wette'® We have discovered a very simple explanation of
swered by careful consideration of forces and masses. the fact® that a “gap mode” confined to the surface occurs

in the diatomic chain if the endmost atom is a light atom.
Consider mode e, which like mode b has pairs of atoms
vibrating with fixed center of mass. However, adjaceairs
“WW a1, et i vibrate in such a way that the connecting spring is not
stretched. Thus each pair experiences no force from any
other atom and is decoupled from the rest of the chain. The

a | G- | & - G- .*‘ resulting decoupled pairs oscillate with?=K/M,q as for
isolated diatomic molecules. Since all pairs have the same
b ‘ - @ G- -@ } G~ @ J frequency, this is a stable normal mode. The frequency lies

exactly in the middle of the gap of the squared frequency

A
spectrum|[K/M o= (1/2) (2K/M | +2K/My)]. In order to
© ’ © -® ‘ O - } c -@ ‘ be decoupled, the heavy atom of a given pair, and the adja-
A cent light atom of the next pair deeper into the bulk, must
i/ - @0 @ G- e | have the same displacement, smallerNby/M; (and with

opposite sigh than the displacement of the previous light
. o atom closer to the surface, in order to conserve center of
. ‘ o -@ ’@ ® l G e ‘ mass position. Since adjacent pairs have displace_ment ratios
—M_ /My, the nth pair has amplitude proportional to
Fig. 2. The diatomic chain, the special bulk modes a, b with wavelengtll — M /My)"=(—1)"exp(—nIn(My/M,)). This is an expo-
A= and wave vectok=0, the special bulk modes c, d with wavelength nential decay exp{2na/¢) with decay length ¢

N=4a and k= /2a (all shown circled in Fig. ], and the gap mode e =2a/|n(MH/M,_). If the surface atom had been a heavy
confined at the surface when a light atom terminates the chain. In picturea

a—d, the chain is infinite; by contrast, in picture e, the light atom at the left tom, this mode WOUId h.ave. been EXponentla”y growing
is the surface atom, with no spring acting to its left. The brackets indicaterather than decaylng,_ which is not aIIOW_ed for a normal
pairs of atoms which move without altering the length of the bond betweedNOde. Mode e was first found by Wallfsin an elegant

them. calculation of the spectrum of finite chains. Our simple ar-
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normal modes with displacements in the plane of the surface.
Fig. 3. “Polar” surface of a diatomic crystal in two dimensions. This is a Many branches of Surfa_ce normal_mOdes have been seen ex-
two-dimensional analog of the(111)” surface of crystals with the “rock- ~ perimentally by scattering experiments. Unfortunately we
salt” (NaCl) structure. A square conventional unit cell is shown as dashechave not been able to locate in the literature any observation
lines parallel to conventional andy axes. There are two possible termina- of the simple mode illustrated in Fig. 3. This is perhaps

tions of such crystals, ones which expose planes of light atoms as shown bd cause polar surfaces are relatively unstable and hard to
open circles, and ones which expose planes of heavy atoms, shown as closc(ﬁgeate and work with

circles. Since the heavy and light atoms have opposite ionic charges, su
surfaces have a surface dipole and are called polar.

VII. IMPURITY ATOM ON THE SURFACE

gument is notto our knowledggin the literature. A “stan- Another known result is that a surface mode appears

dard” derivation is given in the text by Cottam and Till&y. above the bulk frequency spectrum for a monatomic chain,
provided the atom on the surface is lighter than the rest by at
least a factor of 2. This can be proven by a reinterpretation of
VI. SURFACE MODES OF THREE-DIMENSIONAL the previous construction. For mode e in Fig. 2, let the two

CRYSTALS atoms connected by the unstretched spring be reinterpreted

Mode e is directly related to Branchof surface normal @s @ single atom of madd,=My+M_ . Then the model
modes of higher-dimensional diatomic crystals. A two-has new interior atoms all with ma#s,, but a surface im-
dimensional version is shown in Fig. 3. Various types ofpurity atom with massM;;,,=M <0.5M,. The surface
surfaces are possible for such crystals. If cut perpendicular tmode e still solves Newton’s laws with3=K/M 4 and
a conventionak or § axis shown in Fig. 3 by _dashed Iines, Mei=M My /(M +My). In terms of the new variables
the surface cqptalns equ”al numbersAolnd B ions, and is Mimp @nd Mg the reduced masM g is M=M;y,(Mg
ref:—:-rred to as n9np_o|ar. By contrast, the surface shown IS_M, /M. The frequencyw% lies above the top of the
a “polar surface” with a layer of light atoms exposed and P > . .
layers of heavy and light atoms alternating underneath. Thelléu'k band {7z, =4K/Mo) if M°>2Mimp’ and merges into
is a vibrational normal mode in which eatdyer oscillates  the bulk band forMy<2Mn,. This result seems also to
perpendicular to the surfad@s indicated by arrowsand ~ have been first discovered by WaltisA “standard” proof
which is localized at the surface. Of course, in real crystal®f this result is in the book by Desjonges and Spanjaard:
the forces extend beyond first neighbors, so the displacement
ratio (—M_/My) may not be exactly obeyed and the VIIl. LOCALIZED GAP MODE OF A STACKING
squared frequency may not lie exactly at mid-gap, but thgeAULT
actual behavior will mimic reasonably well the idealized
one-dimensional example of Sec. V. The gap mode e of Fig. 2 generates a corresponding mode

There is actua”y not just one mode of this type, but aOf a defective pulk_crystal, shovyn in Fig. 4. This mode de-
branch of such modes, with displacement patterns sinusoicays exponentially in both directions away from the center of
dally modulated along the surface. The one depicted in Fig. $ymmetry. This center lies in the middle of a “stacking
has the surface atoms “a,” “b,” “c,” all moving in phase, fault” where two light-mass atoms have been put adjacent to
corresponding to an infinite wavelength, or zero wave vectoréach other. Itis a one-dimensional version of a planar defect
parallel to the surface. The other extreme case of modulatiowhich occurs in real three-dimensional crystals. The
is when atoms along the surface are completely out of phaséuantum-mechanical force between two light-mass atoms
when atom “a’” moves down, atom “b” moves up, and so differs from the force which binds the atoms of unlike mass.
forth, Corresponding to a Wave|englh: 2v2a in the p|ane Therefore, we must expect that the Separaaibnf the ||ght-
of the surface. Thus we anticipate a branch of surface excinass atoms will differ from the equilibrium separatiarof
tations with wave vectors lying in the plane of the surface. Inunlike atoms, and that the force const#tit between these
order for such a mode to be exponentially localized in theatoms will differ from the constank occurring elsewhere.
surface region, the frequency of oscillation must lie in a gap\Notice that for the special displacement pattern of Fig. 4,
where there are no corresponding bulk normal modes witfthere is no force between the adjacent light atoms, so the
the same components of wave vector in the plane of th&alues ofa’ andK’ are irrelevant; the squared frequency of
surface. A gap is almost certain to occur for the case of zerthe normal mode is exactly the same as the surface mode e of
wave vector, but at increasing wave vectors the gap mayig. 2, and is pinned at midgap.
disappear, and the mode ceases to be localized near the surThe stacking fault is a simple example of a “topological
face. defect,” that is, a defect which cannot be transformed away

Dimension two or three also opens new possibilities lesdy any local change. As far as we know, the midgap normal
directly related to one-dimensional models, such as surfaceode of vibration found here for the stacking fault has not
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previously been discussed in the literature. However, a closexplained by pictorial construction and elementary physics
analog is the “topological soliton” found at midgap in the of the two-body problem. This is certainly not a complete
electronic spectrum of the “Su-Schrieffer—Heeger” catalog of interesting localized modes, but we think that
modef® for polyacetylene with a topological defect in the these modes can serve as useful pedagogical models for phe-
pattern of dimerization of carbon—carbon bonds along thewxomena in several branches in physics.

chain.
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Two simple surface phonons and two simple bound defec®_. p. Landau and E. M. LifshitzQuantum Mechanics, Non-Relativistic

modes in one-dimensional lattices have been quantitatively Theory(Pergamon, Oxford, 19582nd ed., p. 158.

231 Am. J. Phys., Vol. 68, No. 3, March 2000 Allen, Aubin, and Doak 231



