
Measurement method for the nuclear anapole moment of laser-trapped alkali-metal atoms

E. Gomez,1,* S. Aubin,1,† G. D. Sprouse,1 L. A. Orozco,2 and D. P. DeMille3

1Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794-3800, USA
2Department of Physics, University of Maryland, College Park, Maryland 20742-4111, USA

3Department of Physics, Yale University, New Haven, Connecticut 06520-8120, USA
�Received 17 December 2004; revised manuscript received 16 May 2006; published 27 March 2007�

Weak interactions within a nucleus generate a nuclear spin dependent, parity-violating electromagnetic
moment, the anapole moment. We analyze a method to measure the nuclear anapole moment through the
electric dipole transition it induces between hyperfine states of the ground level. The method requires tight
confinement of the atoms to position them at the antinode of a standing wave Fabry-Perot cavity driving the
anapole-induced microwave E1 transition. We explore the necessary limits in the number of atoms, excitation
fields, trap type, interrogation method, and systematic tests necessary for such measurements in francium, the
heaviest alkali.
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I. INTRODUCTION

Zel’dovich postulated in 1957 that the weak interactions
between nucleons would generate a parity violating, time-
reversal-conserving moment called the anapole moment �1�.
Flambaum and Khriplovich calculated the effect it would
have in atoms �2�. Experiments in thallium gave a limit for
its value �3�, and it was measured for the first time with an
accuracy of 14% through the hyperfine dependence of
atomic parity nonconservation �PNC� in cesium �4,5�.

We present in this paper a measurement strategy of the
nuclear anapole moment by direct excitation of the micro-
wave electric dipole �E1� transition between the ground hy-
perfine levels in a chain of isotopes of an alkali-metal atom.
Alkali-metal atoms are the best understood atoms quantita-
tively in their electronic properties associated with PNC. The
precision of the Cs PNC experiments has required more de-
tailed studies of the nuclear structure �6�. Measurements over
a chain of isotopes offer the advantage that they can focus on
the differences appearing as the number of neutrons changes.
This task has been accomplished well by theory �see, for
example, Ref. �7�� for the hyperfine anomaly measurements
in Fr.

Current plans at the Isotope Separator and Accelerator
�ISAC� at TRIUMF, in Vancouver, Canada, should provide
access to all the neutron deficient long-lived isotopes of Fr
with lifetimes above 30 s and to a similar number of the
neutron rich isotopes, a sufficient variety to give a difference
in number of neutrons of more than 10. The expected pro-
duction rates should be at least two orders of magnitude
larger than those obtained at Stony Brook, the leading place
for study of Fr �8�.

A measurement of the anapole moment in a chain of iso-
topes will provide information about neutral weak currents in

the nucleus. The measurements can also give information on
the nuclear structure and its changes as the number of neu-
trons increases �9,10�.

The E1 transition between hyperfine levels is parity for-
bidden, but becomes allowed by the anapole induced mixing
of levels of opposite parity. The general approach has been
suggested in the past �11–18�. We would place many atoms
inside a microwave Fabry-Perot cavity and hold them in a
blue detuned dipole trap. The atoms would interact with the
microwave field and with a Raman field generated by a pair
of laser beams, in the presence of a static magnetic field. We
would confine the atoms to the node �antinode� of the mag-
netic �electric� microwave field to drive only an E1 transition
between hyperfine levels. The atoms would start in the lower
hyperfine level, with the signal proportional to the population
of atoms in the upper hyperfine level after the excitation. The
interference with a Raman transition would give a signal
linear in the E1 transition.

Recent work related to time-reversal invariance tests in
atomic traps �19,20�, points to the many advantages of com-
bining traps with tests of fundamental symmetries, but also
highlights the potential systematic errors present in such
measurements, making a careful evaluation of the method
prior to its implementation necessary. We focus our study
primarily on isotopes of francium, the heaviest of the alkali-
metal atoms �8�, in an optical dipole trap, where the effect is
expected to be large.

The organization of the paper is as follows: Section II
gives the theoretical background for the nuclear anapole mo-
ment, Sec. III explains the proposed measurement method,
Sec. IV presents an analysis of noise sources and systematic
effects, and Sec. V contains the conclusions.

II. THEORETICAL BACKGROUND

The exchange of weak neutral currents between electrons
and nucleons constitute the main source of parity-violating
atomic transitions. The currents are of two kinds, depending
on whether the electron or the nucleon enters as the axial
vector current. The corresponding terms in the Hamiltonian
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differ on their dependence on the nuclear spin. The part in-
dependent of the nuclear spin is generally the dominant con-
tribution in atomic PNC. This is not the case for the present
work, where we consider transitions between hyperfine lev-
els of the ground state, and the contribution from the nuclear
spin-independent part is zero �21�. The Hamiltonian for the
spin-dependent part in the shell model with a single valence
nucleon of unpaired spin is given by �22�

H =
G
�2

KI · �

I�I + 1�
�i��r� , �1�

where G=10−5mp
−2 is the Fermi constant, mp is the proton

mass, K= �I+1/2��−1�I+1/2−l, l is the nucleon orbital angular
momentum, I is the nuclear spin, � are Dirac matrices, and �i
is the interaction constant, with i= p ,n for a proton or a neu-
tron. The terms proportional to the anomalous magnetic mo-
ment of the nucleons and the electrons have been neglected.

The interaction constant is given by �22�

�i = �a,i −
K − 1/2

K
�2,i +

I + 1

K
KQW

, �2�

with �2,p=−�2,n=−1.25�1−4 sin2 �W� /2, corresponding to
the tree level approximation, with sin2 �W�0.23 the Wein-
berg angle. Equation �2� has two corrections, �a,i the effec-
tive constant of the anapole moment, and �QW

that is gener-
ated by the nuclear spin-independent part of the electron
nucleon interaction together with the hyperfine interaction.
The three parts of this interaction constant can be traced to
different ways in which the weak interacting vector boson Z0

appears in the Feynman diagrams. The first one �the anapole�
correspond to vertex corrections due to weak hadronic inter-
actions on the nuclear side of the electromagnetic interaction
coupled to the electron through a virtual photon. The second
one takes the direct effect of a Z0 exchange between the
electron vector current and the nuclear axial current. The last
one is the simultaneous exchange of a Z0 and a photon modi-
fying the hyperfine interaction. Flambaum and Murray
showed that �22�

�a,i =
9

10
gi�i

�A2/3

mpr̃0

,

�QW
= −

1

3
�QW

A ��N

�A2/3

mpr̃0

, �3�

where � is the fine structure constant, �i and �N are the
magnetic moments of the external nucleon and of the
nucleus, respectively, r0̃=1.2 fm, A is the atomic mass num-
ber, QW is the weak charge, and gi gives the strength of the
weak nucleon-nucleus potential with gp�4 for a proton and
0.2�gn�1 for a neutron �23�. The anapole moment is the
dominant contribution to the interaction in heavy atoms, for
example, �a,p /�QW

	15 for 209Fr. We will assume from now
on that �i=�a,i.

A. The anapole moment

The anapole moment of a nucleus is a parity nonconserv-
ing �PNC�, time-reversal-conserving moment that arises

from weak interactions between the nucleons �see the review
by Haxton and Wieman �24�.� It can be detected in a PNC
electron-nucleus interaction, and reveals itself in the spin-
dependent part of the PNC interaction. Wood et al. �4,5�
measured the anapole moment of 133Cs by extracting the
dependence of atomic PNC on the hyperfine levels involved.

The anapole moment classically is defined by �see, for
example, Ref. �25��

a = − �
 d3rr2J�r� , �4�

with J is the electromagnetic current density �26�. The
nuclear anapole moment in francium arises mainly from the
weak interaction between the valence nucleons and the core.
Flambaum, Khriplovich, and Sushkov �2� estimate the ana-
pole moment from Eq. �4� for a single valence nucleon to be

a =
G

e�2

K

j�j + 1�
�a,i j = Ci

anj , �5�

where j is the nucleon angular momentum and e is the elec-
tron charge. The calculation assumes a homogeneous nuclear
density, and a core with zero angular momentum, leaving the
valence nucleon carrying all the angular momentum.

The measurement of the anapole moment gives informa-
tion on the weak nucleon-nucleon interactions. A measure-
ment of the anapole moment in a chain of isotopes would
provide a separation of the anapole moment due to the va-
lence proton or neutron.

B. Calculations of the anapole moment of francium isotopes

We use Eqs. �3� and �5� to estimate the anapole moment
of five light francium isotopes with radioactive lifetimes
longer than 1 minute �7�. The unpaired valence proton gen-
erates the anapole moment in even-neutron isotopes, whereas
in the odd-neutron isotopes both the unpaired valence proton
and neutron participate. Francium has an unpaired h9/2 pro-
ton for all the isotopes and a f5/2 neutron for the odd-neutron
isotopes around 210Fr. The protonic and neutronic contribu-
tions add vectorially to generate the anapole moment,

a =
Cp

anjp · I + Cn
anjn · I

I2 I =
G

e�2

�I + 1/2�
I�I + 1�

�aI , �6�

with Ci
anji the anapole moment for a single valence nucleon i

�proton or neutron� as given by Eq. �5� �jp=9/2, jn=5/2�.
Equation �6� defines the coupling strength of the total ana-
pole moment ��a� resulting from adding the valence proton
and neutron. Figure 1 shows the predicted values of �a for a
string of francium isotopes �7� using gn=1.

C. Perturbation theory

The anapole moment induces a small mixing of electronic
states of opposite parity. The effect of the anapole moment
Hamiltonian on the ground state hyperfine levels according
to first order perturbation theory is
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�sFm� = �sFm� + 
F�m�

�pF�m��Ha�sFm�
Ep − Es

�pF�m�� , �7�

where Ep and Es are the energies of the p and s states, re-
spectively, and

Ha = �e�� · a��r� , �8�

is the anapole moment Hamiltonian from Eq. �1�, with a the
anapole moment from Eq. �5�. The matrix element in Eq. �7�
gives �23�

�pF�m��Ha�sFm� = i
�Z2R

��s�p�3/2

2	 + 1

3

�I + 1/2��aR
I�I + 1�


�F�F + 1� − I�I + 1� − 3/4��F,F��m,m�,

�9�

with �=Gme
2�2 /�2�=3.651
10−17, me the electron mass,

Z the atomic number, �s and �p the effective principal
quantum number for the s and p electronic states, 	
=��J+1/2�2−Z2�2, J the electron total angular momentum,
and R the Rydberg. The relativistic enhancement factor R is
given by

R = 4�a0/2Zr0�2−2	/�2�2	 + 1� , �10�

with a0 the Bohr radius, and r0=r0̃A1/3.
The anapole moment mixes only states with the same F

and m, and the mixing grows as Z8/3R. For the 209Fr ground
state, we obtain

�sFm� = �sFm� − i5.9 
 10−13�a 
 �F�F + 1� − 25.5��pFm� .

�11�

The mixing coefficient is imaginary due to time-reversal
symmetry. In practice, the mixing would be measured
through the E1 transition amplitude AE1 �Eq. �16�� it induces
between two hyperfine levels. The effect in francium is 11
times larger than in cesium �27�.

III. PROPOSED MEASUREMENT STRATEGY

High efficiency magneto-optical traps �MOT� for fran-
cium atoms on line with an accelerator have been demon-
strated �28�. Their performance and reliability matches the
needs of the current proposed measurement strategy. Atoms
captured on a first trap would then be transferred to a second
MOT in a separate chamber. We would load the atoms into a
dipole trap located at the electric field antinode of a standing
wave in a microwave Fabry-Perot cavity. We would optically
pump them into a single Zeeman sublevel, and prepare a
coherent superposition of the hyperfine ground levels with a
Raman pulse of amplitude AR and duration tR. Simulta-
neously we would drive the E1 transition of amplitude AE1
with the cavity microwave field, and measure the population
in the upper hyperfine level �normalized to the total number
of atoms �N�� using a cycling transition. The population in
the upper hyperfine level at the end of each sequence would
be

�± = N�ce�2 = N sin2� �AR ± AE1�tR

2
� , �12�

where ce is the upper hyperfine level amplitude. The sign
depends on the handedness of the coordinate system defined
by the external fields, as explained in the next section. The
signal for the measurement,

S = �+ − �− = N sin�ARtR


�sin�AE1tR


�

	 N sin�ARtR


��AE1tR


� , �13�

would be the difference between populations in the upper
hyperfine level for both handedness. The last step assumes a
small AE1, the quantity proportional to the anapole moment
constant �a.

A. Apparatus setup

Figure 2 shows a diagram of the proposed apparatus. The
atoms would be placed inside a microwave Fabry-Perot cav-
ity at the electric field antinode, confined in a blue detuned
dipole trap to a volume with 10 �m length along the cavity
axis, and a 1 mm diameter in the radial dimension. Observa-
tion of the electric dipole �E1� microwave transitions would
be done through an interference method and extraction of the
signal would require repeating the excitation varying the co-
ordinate system.

Preparation of the atoms in a particular Zeeman sublevel
of the lower hyperfine level �F1 ,m1� in an applied static mag-
netic field B=B0ẑ would be necessary. A resonant standing-
wave microwave electric field E�t�=E cos�2��mt
+��cos�kmy�x̂ would excite the atoms to a particular Zeeman
sublevel in the upper hyperfine level �F2 ,m2�. The micro-
wave magnetic field M would be aligned along B, and it is
�/2 out of phase �for a perfect standing wave� with E so that
M�t�=M sin�2��mt+��sin�kmy�ẑ, with M =E in cgs units.

The Raman transition would include two plane-wave op-
tical fields, ER1�t�=ER1 cos��Rt+�R�x̂ and ER2�t�

0.0

0.1

0.2

0.3

0.4

0.5

207 208 209 210 211 212 213

A

κ a

FIG. 1. Anapole moment effective constant for different iso-
topes of francium.
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=ER2 cos���R+2��m�t+�R�ẑ, phase locked to the micro-
wave field. The Raman carrier frequency �R would be tuned
sufficiently far from optical resonance that only the vector
part of the Raman transition amplitude �V� iER1
ER2�
would be non-negligible �29�; that is, we ignore the tensor
part of the Raman amplitude.

B. Observable and reversals

The various electric and magnetic fields of the apparatus
would define a coordinate system related to the measured
rate �±. The transition rate �± depends on three vectors: The
polarization of the E1 transition �E�, the polarization of the
Raman transition �V�, and the static magnetic field B that
provides an axis for the spins of the nuclei. We combine
these three vectors to produce the time-reversal preserving
pseudoscalar i(EÃ (ER1ÃER2) ·B), proportional to the mea-
sured quantity.

A single reversal of any of the fields in the above pseu-
doscalar changes the sign of the interference term of �±. We
then would have the following reversals:

�1� Magnetic field reversal �� reversal�.

�2� A shift of � in the relative phase between the E1 and
the Raman fields �s reversal�.

The Zeeman sublevels reverse with the magnetic field.
The state preparation must be inverted in order to reach the
correct Zeeman sublevel, meaning that �+ light goes into �−

and vice versa. The magnitude of the static magnetic field
and the microwave cavity frequency remain unchanged for
this reversal.

C. Apparatus requirements

1. Magnetic field

We would drive E1 transitions between two particular
Zeeman sublevels, �F1 ,m1�→ �F2 ,m2� in different hyperfine
levels of the ground state. While the frequencies of the ex-
citing fields can be well controlled, the energy difference of
the Zeeman states is determined primarily by the static mag-
netic field.

The experimental design should minimize the sensitivity
to magnetic field fluctuations. The energy difference between
two levels passes through a minimum at the static magnetic
field B0, and depends quadratically on the magnetic field
around that point. We would use the Zeeman sublevels that
give the smallest quadratic dependence. Table I lists the Zee-
man sublevels and magnetic fields selected for different fran-
cium isotopes. The experiment would work between the
�F1 ,m1� and �F2 ,m2� levels and also between the �F1 ,m2� and
�F2 ,m1� levels, interchanging m1 and m2. The operating point
of the static magnetic field and the frequency of the micro-
wave cavity would have to be corrected slightly because of
the nuclear spin contribution. The state preparation would
also change to start in the appropriate level. The change of
m1 �m2� for m2 �m1� does not work as a reversal because of
the difference in transition amplitude, but it can still be use-
ful as a consistency check.

The frequency for the F=4, m=0 to the F=5, m=−1 tran-
sition in 209Fr, expanded around the critical field B0
=1553 G, is

�m = 42.816 
 109 + 90�B − B0�2 Hz, �14�

with B in G. Control of the magnetic field to 0.06 G �three
parts in 105� reduces the frequency noise due to magnetic
field fluctuations down to ��m�0.3 Hz.

The experiment would take place in a large magnetic field
whereas the state preparation and detection occur in a small
magnetic field. The transition between both regimes should

ERF

BRF , BDC

ERaman1

x

z

y

ERaman2
FIG. 2. Schematic setup of the proposed apparatus. The micro-

wave cavity axis is along the y axis. The microwave electric field
inside the cavity oscillates along the x axis. The two Raman laser
beams are polarized along the x axis and z axis, respectively. The
microwave magnetic field and the static magnetic field are both
directed along the z axis. A dipole trap �not shown� holds the atoms
at the origin that coincides with an antinode of the microwave elec-
tric field.

TABLE I. Parameters of the five relevant francium isotopes: Spin, hyperfine splitting �hfs� of the 7s1/2 state �Refs. �30� and �31��, Zeeman
sublevels m1, m2, and their energy separation �m at the static magnetic field B0 used in the proposed measurement.

Isotope Spin hfs �MHz� m1 m2 B0 �G� �m �MHz�

208 7 49880.3 0.5 1.5 2386.5 49433

209 9/2 43033.5 0 −1 1553.0 42816

210 6 46768.2 0.5 1.5 2586.4 46208

211 9/2 43569.5 0 −1 1572.3 43349

212 5 49853.1 0.5 1.5 3265.7 49015
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be done adiabatically. The time scale is determined by the
precession time in a small magnetic field, resulting in a mag-
netic field ramp duration of hundreds of microseconds.

2. The microwave cavity

The francium hyperfine separation requires a Fabry-Perot
microwave cavity operating at around 45 GHz �wavelength
�m�0.66 cm� in a Fabry-Perot configuration; for example, a
cavity with a mirror separation of d�20�m�13 cm and a
mirror radius of rm=3.5 cm. These parameters combine to
minimize diffraction losses as the Fresnel number FN�1,
where FN=rm

2 /�md �32�.
The quality factor �Q� of the cavity is

Q =
d

2�
, �15�

where � is the skin depth and is equal to �2/��0� with �0
the magnetic constant and � the conductivity �5.8

107�−1 m−1 for copper at room temperature�. The conduc-
tivity limited quality factor is Q=1.9
105. It is possible to
couple 58 mW into the cavity with current available technol-
ogy, which would give an electric field of 476 V/cm to drive
the E1 transition.

The E1 transition amplitude for 209Fr between the initial

hyperfine level �ī� F=4, m=0 to the final hyperfine level � f̄�
F=5, m=−1 with a static magnetic field of 1553 G �see
Table I� is

AE1/ = � f̄ � − eE · r�ī�/ = 0.01i� E

476 V/cm
�� �a

0.45
� rad/s.

�16�

A more accurate result can be obtained with the use of many-
body perturbation theory �27,33,34�.

A 1 cm cavity waist would cover the atoms in the 1 mm
diameter 10 �m length trap, and radius of curvature of Rm
=9.9 cm for the cavity mirrors ensure a stable cavity, since
�1− �d /2Rm��2�1. The curvature of the wave fronts could
create a gradient of polarization of the microwave field
smaller than 3
10−5 rad cm−1 over the volume of the trap.
We show later that this rotation is within acceptable ranges.

The field inside the cavity can be decomposed into a
standing wave and a traveling wave. The presence of the
traveling wave generates M1 transitions despite the location
of the atoms at the node of the standing wave magnetic field.
Significant reduction of the amplitude of intracavity traveling
waves comes with a symmetrical arrangement of identical
antennas, one on each mirror. Antennas give a high coupling
efficiency into the cavity �35� as compared to a slit or a
grating �36�. The electric field inside the cavity is given by

E = e−i�mt� 1

1 − r1r2e2ikmd� 
 �E1t1�eikmz − r2eikmde−ikmz�

+ E2t2�e−ikmz − r1eikmdeikmz�� , �17�

where r is the reflectivity, t the transmissivity, k is the wave
vector of the microwave field, d the separation between the
mirrors, and the subindices 1 and 2 refer to the two mirrors.

The first �second� term is the field generated by antenna 1
�2�. The expression is the sum of two waves, one traveling to
the right and the other to the left. The difference in amplitude
between these two contributions results in a traveling wave.
The ratio of traveling to standing wave assuming a sym-
metrical cavity, that is r1=r2=r and t1= t2= t, is

RT/S = � i�

4
+

E1 − E2

4E1
��i�1 − r� + km�d� , �18�

with � the phase mismatch from both antennas and �d the
deviation of the cavity mirrors separation from the ideal po-
sition. Assuming �=0 and control of the amplitude from
each antenna to 1%, the position of the mirrors to 0.1 �m
and taking 1−r=3.6
10−4 �consistent with the Q factor
computed above�, we obtain RT/S= �3+9i�
10−7.

3. Dipole trap

We choose a far-detuned dipole trap to contain the atoms
for the duration of the measurement since the perturbations
introduced by it are small and measurable. A variety of dif-
ferent geometries have been proposed over the years. These
include red-detuned traps based on focused beams, and blue-
detuned traps with hollow beams �see Refs. �37� and �38� for
reviews of recent work.�

The trap would confine the atoms within 10 �m around
the microwave electric field antinode and 1 mm diameter in
the radial dimension. The region of confinement would be
smaller than the microwave wavelength �Lamb-Dicke re-
gime�, so Doppler broadening becomes negligible.

The ac Stark shift ��E�, which produces the restoring
force of the dipole trap, displaces the two hyperfine levels of
ground state in the same direction but not by the same
amount. The differential shift changes the resonant frequency
for the cavity-driven E1 transition used in the anapole mo-
ment measurement. The change in the hyperfine separation
for a detuning ��=w−we� larger than the hyperfine splitting
��hfs� is approximately equal to ��hfs /���E �39�. The shift
reduces considerably using a blue detuned far off resonance
trap �FORT� at 532 nm.

The dipole trap in combination with the cavity field may
generate a multiphoton transition. There are four vectors
available for that transition: E1D, M1D the dipole trap elec-
tric and magnetic fields, E the microwave electric field, and
B the static magnetic field. The parity and time-reversal-
conserving observables created with combinations of the
above vectors that produce a resonant transition ��E1D ·E�

�M1D ·B�, �E1D ·B��M1D ·E�, �E1D
E� · �M1D
B�,
�E1D
B� · �M1D
E�, �E1D
M1D� · �E
B�, and i�E1D

E� ·M1D�, give a negligible contribution if the trap laser
propagates along B.

4. M1 transition

The dominant transition between the two hyperfine states
is a magnetic dipole M1 transition. The magnetic component
of the microwave field could drive M1 transitions. A micro-
wave magnetic field polarized along the x axis would have
the same signature as a parity-violating signal. The M1 tran-
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sition amplitude �AM1� between the levels of interest is given
by

AM1/ = � f̄ ��− e/2me��J + S� · M�ī�/

= 7.8 
 106� M

1.6 G
� rad/s, �19�

for the maximum expected microwave magnetic field in the
Fabry-Perot cavity. The ratio of the E1 transition �Eq. �16��
to the M1 transition is �AE1 /AM1��1
10−9. The success of
the measurement depends on reducing and understanding
this transition. We propose to suppress it in three ways.

First �see Fig. 3�a��, we would place the atoms at the
magnetic field node �electric field antinode� of the micro-
wave cavity. The magnitude of the microwave magnetic field
at the edges of the atomic trap is reduced by a factor N

=sin�2�dt /�m�, with dt=10 �m the length of the trap along
the cavity axis. The reduction factor at 45 GHz is N=4.8

10−3.

Second �see Fig. 3�b��, we would direct the polarization
of the M1 field to be along the z axis �Fig. 2�. The nonreso-
nant M1 transitions in this case would be of the type �m
=0. The static magnetic field �B0� would split the Zeeman
sublevels of the two hyperfine levels, and the microwave
field would be resonant for the ��m�=1 E1 transitions �the
microwave electric field would be polarized along the x
axis�. The alignment imperfections give a suppression factor

equal to sin������10−3 rad, the angle of the microwave
magnetic field polarization with respect to the z axis.

Third �see Fig. 3�c��, the atoms in the dipole trap would
oscillate around the microwave magnetic field node. An atom
crossing the node would see a microwave magnetic field
pointing in the opposite direction. The change in position
effectively would flip the phase of the magnetic field that the
atom sees, and would reverse the evolution generated by the
M1 transition. The dynamical suppression only takes place if
the frequency of oscillation ��� of the atoms inside the trap is
larger than the Rabi frequency of the M1 transition and is
given by �1/�N��M1 /�. The frequency of oscillation along
the cavity axis for the proposed geometry would be � /2�
�300 Hz.

Taken together, the three suppression mechanisms would
reduce the expected M1 transition amplitude to AM1s /
=1.9
10−5 rad/s for 106 atoms. This is 500 times smaller
than the amplitude for the E1 transition.

D. Signal-to-noise ratio

The magnitude of the signal from Eq. �13� reaches a
maximum for a Raman transition amplitude of AR= �2n
+1�� /2 with tR=1. The measurement of the upper hyperfine
state population collapses the state of each atom into one of
the two hyperfine levels. The collapse distributes the atoms
binomially between the two hyperfine levels and leads to an
uncertainty in the measured excited state fraction called pro-
jection noise NP �40�. The projection noise is given by

NP = �N�ce�2�1 − �ce�2� . �20�

The projection noise vanishes when all the atoms are in one
of the hyperfine levels, but in those cases the noise is domi-
nated by other sources, such as the photon shot noise.

The signal-to-noise ratio for a projection noise limited
measurement is

S
NP

= 2
AE1tR


�N . �21�

Taking AE1 from Eq. �16�, tR=1 s, and integrating over
104 cycles, we would reach a 3% measurement with only
300 atoms.

The high-efficiency MOT that we developed at Stony
Brook, with production rates around 106 s−1, captures in ex-
cess of 105 francium atoms �28�. We expect to trap 106 atoms
after transferring them to an ultrahigh vacuum environment.
In this case, Eq. �21� predicts a signal-to-noise ratio of 20 in
1 s. Higher francium production rates could be obtained at
other facilities, such as ISAC at TRIUMF, where an actinite
target could deliver in excess of 108 atoms per second of a
single isotope.

While measurements in francium benefit from a large AE1,
large atomic samples of other alkali-metal atoms are easily
prepared. We could obtain the same signal-to-noise ratio in a
cesium sample with 100 times more atoms and the same
strength-driving field. While the fundamental signal-to-noise
ratio indicates the inherent trade-offs between different alkali
species, technical noise, specific to the instruments dedicated

cavity axis

Atom

(c)

dipole trap
potential

cavity axis

BRF
ERF

(a)

BRF

BRF
|∆m|=1

∆m=0(b)

mF = -I+1/2
mF = -I -1/2

mF = -I+1/2

FIG. 3. Suppression mechanisms of the M1 transition. �a�
Trapped atoms would sit at the magnetic field node, where the
magnetic field is zero. �b� Schematic of the ground hyperfine levels
showing a ��m�=1 transition such as the one for the anapole mo-
ment and the �m=0 out of resonance transition such as that induced
by the M1 field. The level spacing as well as the spin do not cor-
respond to any particular atom. �c� Trapped atoms would oscillate
around the microwave magnetic field node and would sample a zero
time-averaged magnetic field.
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to the measurement, must also be considered. For a discus-
sion of technical noise in the cesium PNC Boulder experi-
ment see Ref. �4�.

IV. NOISE AND SYSTEMATIC EFFECTS

The measurement of the anapole moment would come
from determining the population transferred from the lower
to the upper hyperfine level by the application of the Raman
and microwave fields. Both of these fields �or any other stray
field� are characterized by a field amplitude, frequency �or
detuning�, and interaction time. The total transition ampli-
tude for a common detuning ��� and interaction time �tR� is

A = �AR1 + AE11 + A1� + i�AR2 + AE12 + A2� , �22�

where AR1,R2 are the real and imaginary components of the
Raman amplitude, AE11,E12 the corresponding for the E1 tran-
sition amplitude, and A1,2 are the real and imaginary parts of
any other transition present such as an M1 transition.

Table II shows the phase of the transitions for given field
polarizations, with their transformation under magnetic field
reversal assuming all the excitation fields are in phase. We
control the phase difference ��� between the Raman field and
the cavity E1 field. Varying � introduces an additional factor
of ei� on the E1 transition amplitude while the Raman tran-
sition remains unchanged. The standing wave M1 field inside
of the cavity is 90° out of phase with the E1 field, which
gives a factor of iei� for the M1 transition. If instead the M1
field corresponds to a traveling wave, then it is in phase with
the E1 field.

The Raman field would be polarized along the y axis so
that AR1=ARy, and the E1 transition polarized along the x
axis so that AE11= iAE1x �or �=� /2�. These two amplitudes
would interfere since both are in phase and only one �the E1�
changes sign under magnetic field reversal as shown in Table
II. Expanding Eq. �12� for large ARy compared to the detun-
ing and other amplitudes, we obtain

�/N 	 sin2�ARytR

2
� +

1

2
sin�ARytR


��AeftR


� , �23�

with

Aef = �iAEx + A1 +
2�2

2ARy
+

1

ARy
�ARx + A2�2� . �24�

Aef contains the signal �AEx� and noise �A1, A2, ARx, and ��
terms. We can use this expression to set limits in the different
experimental parameters and identify the corresponding ob-
servable. Expanding the last term in Eq. �23� for small tR
gives

tR
2

22ARyAef . �25�

The first term in Aef is proportional to iARyAE1x, which cor-
responds to the PNC signal i(E
 �ER1
ER2� ·B).

The amplitudes of interest are the Raman amplitudes
ARx,Ry, the E1 amplitude AE1x, a M1 transition that is in
phase with the E1 field AMix,Miy, and an M1 transition that is
� /2 out of phase with the E1 field AMox,Moy. As an example,
if the standing wave magnetic field inside of the cavity is
tilted towards the x axis it generates an amplitude AMox since
this field is out of phase with the E1 field. The M1 ampli-
tudes are included in Eq. �24� as A1 or A2 depending on their
phase relation to ARy.

The relevant values for the relative phase ��� between the
E1 and the Raman transition are multiples of � /2. First we
study the case with �=0,�. This does not correspond to the
PNC measurement since the E1 and Raman transitions are
out of phase and do not interfere. The signal obtained with
this configuration is still helpful in the evaluation of un-
wanted contributions. We can rewrite Aef from Eq. �24� using
Table II and ignoring the detuning ��� as

Aef =
1

ARy
��AMox

2 − AMiy
2 − ARx

2 � + s�iARyAMoy − 2iARxAMox�

+ ��− 2iAMiyAMox� + s��ARyAMix − 2AMiyARx�� , �26�

with s=1,−1 when �=0,�, respectively, and �=1,−1 de-
pending if we have the normal experiment or we apply a
magnetic field reversal. With �=� /2 ,−� /2 instead we get

Aef =
1

ARy
��AMix

2 − ARx
2 − AMoy

2 � + s�iARyAMiy + 2iARxAMix�

− ��− 2iAMoyAMix�

+ s��2ARxAMoy − ARyAMox + iARyAE1x�� , �27�

where now s=1,−1 when �=� /2 ,−� /2, respectively. This
corresponds to the experimental condition for the PNC mea-
surement. The PNC signal is contained in the last term, and it
changes sign under both reversals. Equations �26� and �27�
show how reversals can be used to isolate the PNC signal.

We divide the analysis of the different experimental pa-
rameters into three parts: Systematic effects that include
terms that mimic the PNC signal and that are contained in
the last parentheses of Eq. �27�, line broadening mechanisms,
which contain all other terms and that average to zero after
an infinite number of cycles, and calibration errors that
modify the value of the extracted constants on the PNC
signal.

TABLE II. Phase �P=A / �A�� of the relevant transition ampli-
tudes for the initial state F1=4, m1 and final state F2=5, m2 and
polarized along the specified axis. For this table all the fields have
the same phase �equal to 0�. PRx represents the Raman transition
with one vector along the y axis and the other along the z axis, such
that their cross product points along the x axis. � represents the
static magnetic field reversal together with a sign change on the
Zeeman sublevel m.

Reversal m1 m2 PE1x PM1x PM1y PRx PRy

Normal 0 −1 i 1 i i 1

� 0 1 −i −1 i −i 1
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A. Line broadening mechanisms

We start with terms that do not change under both rever-
sals. They include the detuning term from Eq. �24� and all
the terms in Eq. �27� except for the last parentheses. We
present the requirements to achieve a precision of 3% in the
measurement after 104 repetitions. Each noise amplitude
must be controlled to 3AE1

We could reduce the effect of some noise terms by in-
creasing ARy �see Eq. �24��. We would take ARy to be exactly
equal to a �2n+1�� /2 pulse, and include any deviation from
this value into A1. We would control the Raman pulse to
0.025% in one second with shot noise limited detection. This
would limit the maximum value for the Raman pulse to
ARy /=121 rad/s or n=38. We now proceed to analyze the
spurious terms in Eq. �27� that contaminate the signal.

1. 2�2 /2ARy

The detuning can have its origin in poor frequency control
on the microwave or Raman fields, or changes in the external
fields that shift the energy levels. The detuning would have
to be controlled to �=2.7 rad/s. The required accuracy for
the microwave field frequency is one part in 1011.

Control of the static magnetic field B0 to a fractional sta-
bility of 5
10−5 would keep the detuning under control.

The presence of an M1 transition produces an ac shift of
the levels. The value of the maximum shift is �3 mHz,
which is negligible.

The atoms in the trap occupy different vibrational levels.
Transitions between different vibrational levels are sup-
pressed for a sufficiently far detuned trap. Each vibrational
level has slightly different resonance frequency that leads to
broadening of the signal and loss of coherence.

Coherence times as long as 4.4 s have been measured for
atoms in a blue detuned trap �41�. The main source for de-
coherence was the distribution of Stark shifts felt by the at-
oms. We expect a coherence time 16 times smaller in fran-
cium than in Ref. �41� using a laser at 532 nm because of the
difference in hyperfine splitting and detuning. The dephasing
grows slowly in time and can be reversed with the use of an
“echo” technique. The atoms would spend approximately
one-half of the time in each hyperfine level with a Raman
transition amplitude AR= �2n+1�� /2 for large n. It is neces-
sary in that case to keep the coherence for a time approxi-
mately equal to tR /n, with tR the duration of the experiment.
We would need a coherence time of 26 ms for n=38 to have
an interaction time of 1 s. This is below the expected 300 ms
coherence time.

The average differential Stark shift seen by the atoms
would be approximately equal to kT��hfs /�� /h=6.3 Hz. The
effect of the time varying detuning generated by the oscilla-
tions in the trap is similar to a steady state detuning of the
same magnitude, and can be compensated by adjusting the
microwave frequency. We must control the power of the trap
laser to 7%.

2. ARx
2 /ARy

This term appears due to a bad polarization alignment of
the Raman field. Control of the polarization of the Raman

field to one part in 103 would be necessary to suppress this
term.

3. „AMix
2 ,AMoy

2 ,ARxAMix ,AMoyAMix… /ARy

These terms are multiplied by a small number and their
contribution becomes negligible. For example, ARxAMix /ARy
has the small factor ARx /ARy appearing due to polarization
misalignment in the Raman beams.

4. ARyAMiy /ARy=AMiy

This is the dominant term that depends on the M1 transi-
tion. The M1 field appears due to imperfections in the mi-
crowave cavity field that create a traveling wave component
that may be in or out of phase with the E1 transition.

Equation �18� gives the amplitude of the traveling wave
expected in our setup. The traveling wave is polarized along
the z axis, so we can include the polarization suppression
factor of 10−3. Combining these two numbers with the am-
plitude for the M1 transition we get an amplitude of 0.25AE1
out of phase with the E1 transition, and an in-phase ampli-
tude of 0.75AE1.

The relative phase between both antennas ��� can be ad-
justed by minimizing the M1 contribution when the static
magnetic field �B� is tilted slightly. The antennas phase mis-
match contribution remains controlled for ��0.01 rad.

B. Systematic effects

The systematic effects include the terms in the last paren-
theses in Eq. �27�. They change sign under both s and �
reversals just as the PNC signal. The constraints for these
terms are stronger since they do not average to zero. Their
contribution must be below 0.03AE1 to reach a 3% measure-
ment. We proceed to analyze each one of these terms.

1. ARxAMoy /ARy

This term appears because of a combination of misalign-
ment of the Raman field and misalignment of the microwave
field or imperfections in the microwave cavity. It corre-
sponds to the observable M
 �ER1ER2� ·B. This term is re-
duced by the Raman misalignment �ARx /ARy� and its contri-
bution would become negligible.

2. ARyAMox /ARy=AMox

This term has the same origin as the previous one, but its
contribution is considerably larger since it is not suppressed
by the Raman misalignment. It gives the limiting factor in
the precision of the measurement and its control depends
completely on the suppression mechanisms.

The cavity mirrors may have some birefringence, which
generate a microwave magnetic field x-axis component. The
microwaves make roughly 1000 reflections in the cavity. We
need a polarization rotation smaller than 10−3 rad or a rota-
tion per reflection smaller than 10−6 rad to keep the M1
suppression unchanged. The constraint for a 3% measure-
ment is 14 times smaller.

The atomic sample would have to be precisely held at the
node of the microwave magnetic field. The maximum dis-
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placement we can tolerate is 3
10−11 m for a 3% measure-
ment.

C. Calibration errors and requirements on theoretical
calculations

The PNC signal �Eq. �13�� would give directly the AE1
amplitude since the uncertainty in the Raman amplitude is
negligible. AE1 is the product of the microwave electric field
and the matrix element. The microwave electric field ampli-
tude must be known to 3%. The electric field could be mea-
sured by tilting the magnetic field and inducing an M1 tran-
sition. The extraction of information about the weak
interaction from an experimental measurement requires the-
oretical input �24,42�. The quality of the electronic wave
functions is the most important. The accuracy of the matrix
elements must be comparable to that of the experiment. The
effective constant of the anapole moment �a is obtained after
subtracting the other two contributions to �i �Eq. �2��.
Johnson et al. show that the other contributions for the case
of Fr amount to a few percent �27�. The anapole moment of
the even-neutron isotopes comes only from the unpaired pro-
ton, while the odd-neutron isotopes contain contributions
from the unpaired proton and neutron. A measurement of the
anapole moment to better than 10% would give an initial
separation of both contributions �22�.

D. Other sources of fluctuations

The microwave magnetic field would generate transitions
to other levels of the type �m=0, which are nonresonant at
the proposed magnetic field �detuning �0.4 GHz�. Neverthe-
less, these transitions will have to be taken into account in a
detailed analysis of the data.

Stray electric fields produce Stark induced transitions that
mimic the PNC signal. A stray electric field of 13 V/cm in
the z direction would generate a transition amplitude equal to
the parity violating signal. Stray fields large enough to be a
problem are unlikely to occur and can be ignored �29�.

Gradients induce higher order multipole transitions, such
as an E2 transition. Fortunately, these higher order transi-
tions between the two hyperfine ground levels are strongly

suppressed. Table III summarizes the results of the analysis
of noise and systematic effects.

V. CONCLUSION

The anapole moment provides a unique probe of weak
hadronic interactions. In particular it is sensitive to weak
long-range meson exchange interactions, and consequently
allows a measurement of weak neutral currents in the
nucleus. This is not the case in high-energy experiments
where the weak contribution must be separated from the
strong and electromagnetic contributions that are much
larger. We have presented the analysis of a proposed mea-
surement strategy of the nuclear spin-dependent part of the
PNC interaction, dominated by the anapole moment. While
the proposed measurement method can be extended to other
alkali-metal atoms, a series of measurements in a chain of
francium isotopes allows the separation of the proton and
neutron contributions to the anapole moment.

As noted by Fortson et al. �9,10� studies of atomic parity
nonconservation give information on the nuclear physics.
The nuclear weak interaction at low energies is often param-
etrized by a series of coupling constants, either with a meson
exchange formalism, the so-called DDH parametrization
�43�, or more recently with effective field theories �EFT�
�44�. A program of measurements of the anapole moment in
a chain of francium isotopes will contribute significantly to
constrain some of the DDH parameters, which together with
the EFT program will provide a model independent input for
theoretical analysis of low energy weak interaction constants.
It is important to note that the measurement of the anapole
moment of an even and an odd isotope of francium give
almost orthogonal bands in the meson coupling parameter
space. This is subject to the assumption that the anapole
moment is carried mainly by the last nucleons �22�, but as
shown by the measurements of the hyperfine anomaly �7�,
this is a reasonable assumption. These measurements will
significantly contribute to deepen our understanding of the
nuclear structure.
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TABLE III. Fractional stability required for a 3% measurement. The observable associated with each constraint is also included.

Observable Constraint Set value Stability

ARyAE1 Microwave amplitude 476 V/cm 0.03

ARyARy Raman amplitude 121 rad/s 2.5
10−4

���2 Microwave frequency 45 GHz 10−11

Dipole trap Stark shift 6.3 Hz 0.07

dc magnetic field 1500 G 4.7
10−5

ARxARx Raman polarization 0 rad 10−3 rad

ARyAMiy Mirror separation 13 cm 7.7
10−7

Antenna power 57 mW 0.02

Antenna phase 0 rad 0.01 rad

ARyAMox Mirror birefringence 0 rad 1
10−4 rad

Trap displacement 0 m 3
10−11 m
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