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Development of a Digital Offset Laser Lock
Ian Hage

Abstract

An offset laser lock is an optoelectronic system capable of stabilizing a laser’s optical frequency
to a variable offset from another stable laser’s frequency. The lock system described in this
report relies on a digital frequency comparison of the beat note of two lasers to determine and
fix the frequency difference, or offset, between them. This thesis describes the construction of
a configurable proportional-integral (PI) control circuit to regulate a laser’s frequency based on
the error signal generated by a digital comparison of the beat note frequency, as well as the
integration of formerly unconnected circuit elements within the laser lock. Testing confirms the

proper operation of both the PI circuit and the laser lock system.

1 Introduction

The primary goal of a laser locking system is to fix or stabilize a laser’s frequency. Diode lasers
become unstable due to temperature drifts as well as mirror vibrations in the laser cavity [1]. Further-
more, the laser diode is extremely sensitive to fluctuations in its injection current. Atomic spectral
lines provide a robust frequency reference that is both stable and reproducible. However, spectral
lines are few and far apart [2]. Spectral locking is a complicated and expensive procedure, so it is
convenient to arrange a system by which one laser can borrow stability from another. An electronic
system capable of locking a laser at a variable frequency offset allows for an economically viable lock
that can achieve a range of frequencies. The lock system in this thesis is designed to be capable of an
offset range of £7 GHz. This range encompasses the possible hyperfine splitting of most alkali metals,
elements commonly used in atomic experiments[3]. Unlocked lasers such as the titanium-sapphire laser
used in the William and Mary Ultra-cold AMO lab exhibit excursions of several MHz in the frequency
domain, but the locked laser should be stable to better than 1 MHz when given a stable source.

A paradigmatic application for the offset lock is optical pumping and probing in rubidium (Fig. 1).
For 8"Rb, the D2 transition between 5251 /5 and 52P; /5 levels is at 780 nm or 384 THz. 525, is the
ground level and has hyperfine levels that have a separation of 6.83 GHz, whereas the four hyperfine

levels of the excited state span only 495.8 MHz. Therefore, an offset lock with a range of 7 GHz or
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Figure 1: Hyperfine splitting of Rubidium 87’s D2 Line. Energy levels will shift due to the presence of
a magnetic field. The 6.8 GHz separation between the F=1 and F=2 levels justifies the 7 GHz range
of the lock system. Repumper laser at a frequency offset from an already locked probe beam is one
potential application of the lock system.

higher should be able to target any D2 transition in 3"Rb. A variable offset is particularly useful in
the case of an applied magnetic field, in which the hyperfine levels, and thus the optical transitions,
are shifted due to the Zeeman effect, typically on the order of a few 1-140 MHz for fields of up to 100
Gauss. In such a case the variable offset allows the laser frequency to track the new hyperfine levels
by simply changing the offset proportionally to the magnetic field.

The lock can also be used without an offset to increase laser power by simply allowing the addition
of another laser at the same frequency. This technique could be used to increase the power of the

Ultra-Cold AMO lab’s magneto-optical trap, allowing for more trapped atoms for experiments.
2 Lock Design Overview

The locking system begins with the Receiver Optical Sub Assembly (ROSA). This optical detector’s
role is to capture light from both the stable and unstable lasers and output the difference in frequency.
This is accomplished in the photodetection medium through the principles governing electromagnetic

waves. The ROSA detects the intensity of incoming light. For two laser fields, the intensity is given



by the following:

I x< E%,,, >;=< [Eicos(wit) + Facos(wat 4+ ¢)]* >, (1)

Where Fiand E, are the electric field amplitudes of waves with frequencies wy, wo and phase
difference . is the time scale for the averaging of the photodetector. Typical laser frequencies are
hundereds of terahertz as in the Rubidium example. For compairison the averaging time of the detector

is on the order of a few gigahertz. Expanding equation 1 gives:
I < Eicos®(wit) + Ficos?(wat + @) + 2B Eacos(wit)cos(wat + @) >, (2)

The cross term can be expanded with the following trigonometric identity into a terms which
have a frequencies that are the sum and difference of the original frequencies, respectively known as
heterodynes.

cos(u)cos(v) = %[cos(u — ) + cos(u + v)] (3)

I < Eicos*(wit) >, + < Eicos*(wat+@) >, + < By Eacos((wi+wa)t+p) >, + < By Fycos((wy—wa)t—p) >,
(4)
The optical laser frequencies incident on the ROSA are too fast to register electronically. Because
of their high speed the squared cosine terms and the summed frequency term are averaged by the
photodetection medium. The average of cos?(z) is 2 and the average of cos(z) is 0. The rightmost
term which has a lower frequency will not be averaged so long as its period is greater than the

integration time of the electronics.

1 1
I x §E% + §E§ + E1Escos((wy — we)t — ) (5)

The only remaining non-constant term has a greatly reduced frequency which is identical to the
frequency difference between the the beams. This is exactly the quantity we want to measure and
control to lock the laser. The ROSA simply reports the lower heterodyne, or “beat note”, as an
electronic signal with the same frequency. The lock should be capable of a 7 GHz offset, so high

frequency electronics are required to handle such signals.
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Figure 2: Lock system design. Items within the red dashed line are included in the laser locking unit.
Arrows show the flow of user inputs and the control signal. Laser light from both stable and unstable
lasers enters the optical receiver (yellow). The generated electronic signals are divided and amplified
to suit the frequency counter. The frequency is then measured and compared to the desired frequency
offset. The frequency difference is converted by the DAC to a proportional DC voltage and fed to an
external PI controller to alter the laser frequency. Green: complete Yellow: incomplete Blue: planned

Figure 2 outlines the complete optical frequency lock loop, whereby the the frequency offset is
recorded and fed back as a control signal. After the beat note is converted into an electronic signal
by the ROSA, it is fed to a Hittite HMC750LP4 limiting amplifier where it becomes a digital square
wave centered on 0V. The square wave is sent to a frequency divider to further reduce the signal
frequency. The Analog Devices ADF4007 divider is capable of a division ratio of 8, 16, 32, or 64
over a wide band, reducing the incoming pulse train to a 1-100 MHz scale frequency. Once a DC
bias is applied to make the signal compatible with the FPGA, this pulse train is sent to the system’s
frequency counter. The Field-Programmable Gate Array (FPGA) is a software configurable digital
circuit programmed to count the pulses over a 10 ms interval. This frequency count is compared with
a desired frequency offset input by the user. The difference of these frequencies is proportional to the
amount of error in the laser frequency modulo the divider setting. The FPGA calculates this error
and sends the information as serial bits to a digital-to-analog converter (DAC). The DAC outputs
an analog signal between -10 and 10 volts that is proportional to this error. A stable lock requires a
stable error signal, but digital-to-analog conversion introduces significant high speed digital noise. A

low pass inductor-capacitor (LC) filter in a ’Chebyshev’ configuration was constructed for the DAC



output to suppress this noise. The final step in feedback control is the separate Proportional-Integral
(PI) control circuit that uses the error signal to produce corrective signals that can control the laser
and adjust its frequency.

This system has similarities to other laser locking systems. Systems developed at Copenhagen
University, the University of Rochester, and the University of Florence all use both use some form of
digital laser control [3, 5, 6]. These systems consist in optical phase-locked loops and rely on digital
phase-frequency discriminators. Systems at the University of Rochester and the University of Florence
utilize both analog and digital phase detection to combine the speed and accuracy benefits of analog
systems with the expanded range of digital detectors. The lock system at the University of Florence
is particularly noteworthy for its use of FPGA based Phase-frequency discrimination. The system in
this thesis contrasts with the above systems by relying soley on frequency detection. It also does not

include any analog detection, similar to the system at Copenhagen University.

3 FPGA

The FPGA used in the laser locking system is the Altera Cyclone II mounted on the DE2 devel-
opment board which includes a 50 MHz clock, memory, and many I/0 interfaces, as well as providing
power to the FPGA. The board is programmed via a dedicated USB cable and Altera’s proprietary
software Quartus. A program written in the Verilog hardware description language configures the
FPGA to perform its frequency counting task. Figure 3 charts the function of this program. A previ-
ous researcher, Julia Stone, created the FPGA program. My contribution to the program consisted in

debugging its communications with the DAC.



50 MHz clock * ClockDivider ~ DACclock

|

Offset Target DataOut - DACdata
Digital Beat Note ——— = Counter ——— Target_match ——— Rescale ~ DAClatch
Counting Time ) . ) :
ey et = HexDisplays = DE2 Hex Display
FPGA Flow Diagram INPUTS
All Verilog files called by Verilo
Display choice - DisplaySelect FrequencylLock.v file, labeled modules
here without .v extension
OUTPUTS

Figure 3: FPGA function. The arrows indicate the passage of digital information from the FPGA
inputs and program modules to outputs for controlling the DAC. The beat note is first counted in
reference to the system clock (50 MHz), then compared to the offset target. The difference is scaled
to a specific voltage in the DAC’s output range, then sent as serial bits to the DAC.

The frequency-divided signal is fed to the DE2 board through a bias-T as a square pulse train.
the “counter.v’ module counts these pulses as well as clock pulses from the on-board clock. After
a certain number of clock pulses, the frequency count is passed forward and the count begins again
from zero. Counting time is currently set in the “counter.v” file at 10ms, but this could be modified
so that the counting time is set via external input. The frequency count is sent as a 16-bit number
to the “Target match.v’ module which subtracts the counted frequency and the target frequency to
arrive at the frequency error. “Target _match.v” feeds all three values to the board’s hex display. The
default display is the counted frequency. The other two values, the target and error frequencies, can
be displayed by pressing the push-buttons on the bottom right of the DE2 board. The “Rescale.v”
module takes the 16-bit error and creates a new 16-bit integer that is scaled to produce the desired
DAC voltage. It is here that the ratio of the DAC’s voltage response relative to its received integer
is set. Finally, the “DataOut.v” module sends the error integer as serial bits to the DAC as well as a
latch signal to cause the DAC to clear its register. This process is coordinated by clock signals divided
down to the required 5 MHz by “ClockDivider.v”. One 5 MHz signal triggers each serial bit sent from

the FPGA, while the second signal, on a slight delay, instructs the DAC to record the sent pulse in its



memory.

In the original version of the frequency lock program, the clock signal, DAC latch, and data signals
were not coordinated properly, thus resulting in an overlap of the latch and data signals. This error
only occurred when the least significant bit of data after rescaling was logic high. The magnitude of
the effect depends on the scaling but at the current setting the distortion amounted to a 70mV hop.

The corrected “DataOut.v” file is included in the appendix.
4 Digital-to-Analog Conversion

As shown in figure 4, digital-to-analog conversion involves several components. The DAC circuit

itself, LC filters, RC filters, and two amplifiers all contribute to a clean analog output.

Box Output

LC Filters

Figure 4: DAC output conditioning. The LC ’Chebyshev’ filter attenuates high frequency noise,
while the RC filters provide stable attenuation at lower frequencies. The differential amplifier takes
the difference of the DAC signal and the DAC’s ground voltage to eliminate noise common to both.
op-amp buffer provides low output impedance to drive the following circuit.

Digital-to-Analog conversion is currently performed by the Analog Devices AD660 integrated cir-
cuit. The DAC outputs between -10V and 10V at a level proportional to the 16-bit integer it receives
from the FPGA. This amounts to a maximum resolution of 0.3 mV per bit. Figure 5 displays the

schema for wiring the DAC IC as well as an image of the DAC itself.
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Figure 5: DAC circuit. Power input capacitors (100 uF) reduce noise from the power supply lines.
Separate analog and digital grounds are connected in one location only to prevent ground loops. Serial
bits (Sin), clock pulses (CLOCK), and the latch signal (LDAC) are routed from the FPGA to their
respective pins. Vout is the analog signal output. +5V and grounded pins configure the DAC for serial
input mode.

Digital-to-analog conversion can be a noisy process. The sharp edges of digital signals result in
high frequency noise that may be present in the DAC’s output. Additional sources of noise include

electromagnetic interference and any noise in the DAC’s power lines.
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Figure 6: Low-pass Chebyshev filter. Design was modeled in SPICE to attenuate signals above 1 MHz.
More filter elements could result in steeper roll-off but risk distorting signals at the knee.

Elimination of such noise is essential to maintain a stable error signal and thus a stable laser. To

attenuate this noise, a low-pass Chebychev filter was added to the DAC output. A Chebychev filter



(Fig. 6) consists of inductors and capacitors in a ladder topology and is desirable for its steep roll
off. Several filter designs were tested in SPICE and prototyped to arrive at a filter with no excessive

distortion of the pass band.

RC Filter Differential Amplifier RC Filter Buffer

w Vout

Figure 7: Differential amplifier and buffer circuit. -Vy, is the DAC reference voltage (ground) after
filtering. The differential amplifier subtracts this from the higher voltage line to reduce any noise that
is common to both lines. The ground and power of the op-amps are isolated from the other systems in
the main box. Voltage regulators within the enclosure are thermally connected to it via an aluminium
strip due to space considerations.

After passing through the high frequency LC filter, the signal enters a final circuit (Fig. 7) to further
reduce noise and buffer the box’s output. First the signal enters through a a resistor-capacitor (RC)
filter before passing both the signal and ’ground’ into a differential amplifier. By taking the difference,
any noise that is common to both lines will cancel out, resulting in a cleaner signal. This difference
is then filtered a final time before passing into an op-amp buffer to lower the output impedance. The

op-amps that make up the buffer and differential amplifier are powered by local £15 V regulators.



Besides filtering, other steps were taken to reduce noise including placing circuit elements in metal
enclosures to reduce electromagnetic interference and clasping ferrite magnets on various power lines
to increase their inductance.

The lock box was tested by passing an RF signal from a Direct Digital Synthesizer (DDS) into
the system’s limiting amplifier. The FPGA was given a target frequency of 200 MHz (3125 kHz after
division by 64). A range of frequencies from 100 MHz though 300 MHz were fed to the box via the
limiting amplifier and the DAC output voltage was recorded after filtering (Fig. 8). As desired, there
is a clear linear relationship between input frequency and DAC output. With the current FPGA and
divider settings, every 64 kHz shift in DDS frequency will result in a 0.9mV change in DAC output. The
maximum observed deviation from the linear model was 7mV, or 0.497 MHz in DDS frequency.There
exists a small amount of rounding error on top of this measured deviation, due to the fact that the
FPGA has no bits to record any frequency under 1kHz. This error is small, less than 32kHz in terms
of DDS frequency, but if needed it can be reduced by changing the divider setting. Accuracy might

also be improved in some applications by changing the scaling of the data sent to the DAC.
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Figure 8: DAC response. Top: DAC output voltage versus FPGA frequency error. The Linear fit
shows a 0.9mV DAC output voltage per 64 kHz change in input frequency. Bottom: Residuals of the
linear fit. Residuals are normalized in terms of FPGA frequency (kHz).

A measurement of the response time of the DAC output was achieved by dropping the DDS
frequency from 300 MHz to 100 MHz in a step function. A fall time of 6.6 ms was observed (Fig. 9).
Because this time was recorded only with reference to the DAC output, it does not include the delay

due to the 10 ms counting time of the FPGA.
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Figure 9: DAC response time. The DDS frequency was stepped from 300 MHz to 100 MHz. The
respnse time of the DAC is about 6.6 ms. This must be considered in addition to the FPGA counter’s

10 ms counting time.

To measure the effectiveness of the filter’s noise reduction, noise traces of the DAC output before
and after filtering were compared. The roughly 300 mV peak-to-peak DAC output resulted in around
20 mV of noise after filtering (Fig. 10). This leaves some room for improvement. Expanding the noise
trace (Fig. 11) reveals that the loudest noise is nearly a 5 MHz pulse, likely the effect of the DAC’s
data clock signal from the FPGA. If this noise is not further reduced after ensuring that the DAC is

not suffering from grounding issues, a commercial filter could be applied to the locking systems output.
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Figure 10: Noise filtering. Left: the DAC output noise before filtering. Right: DAC output noise after
filters are applied. The DAC noise approximates a 5 MHz square pulse, and so is likely due to the

FPGA data clock.
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Figure 11: Expanded “after” noise trace. The plot shows the noise after filtering with a higher resolution
scale (50 mV/div), the 5MHz noise persists in the DAC output after filters, but is suppressed.

5 PI Control

A large portion of the thesis work has involved the construction of the Proportional Integral (PI)
feedback control circuit. The control circuit is housed separately from the other lock components in its
own enclosure. The role of the PI circuit is to transform and condition the error signal generated by the
FPGA and the DAC into a signal that can be fed back to the laser to control its optical frequency. This
laser control signal is the sum of a signal proportional to the error and a signal proportional to the time
integral of the error. Some designers of similar systems involving an FPGA have elected to conduct
PI control digitally on the same chip as the counter [4]. The primary benefits of such an arrangement
is precision control, but at the cost of a significant digital user interface. Laser control circuits in the
Ultra-cold AMO lab are uniformly analog. The circuit diagram for the PI circuit is shown in figure 12
below. The proportional (P) signal is generated by a simple inverting amplifier, while the integration
(I) is performed by an op-amp integrator. The equations governing these configurations are the well
known result of Kirchoffs laws and the operational amplifier rules. The gain of the inverting amplifier
is controlled by the ratio of the feedback resistance and the input resistance, whereas the integrator

gain is proportional to the inverse product of the feedback capacitance and input resistance.

13
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Figure 12: PI circuit diagram. Op-amps are marked 'P’ and ’I’ to label proportional and integral
amplification. Piezo feedback is controlled by the upper part of the circuit, while current control
occurs on the bottom “row”. Selectable capacitor banks, excluding the one controlling integration
gain, are used to select the PI circuit’s response speed. V+ is +10V, and V- is -10V.

There are two methods by which a diode laser’s optical frequency may be controlled by the PI
circuit. The first is to simply alter the electric current poweringg the laser diode. This changes the
index of refraction of the diode, and thus changes the laser frequency [2]. This method of control
is beneficial for making quick corrections, as the control is executed purely electronically. For larger
frequency excursions current feedback cannot be relied on because of the limited range of current-
frequency tuning. To correct for large noise excursions, the preferred method is to alter the length of
the extended Fabry-Perot cavity via piezo-electronics. Here, the control signal causes a proportional
change in cavity length to alter the laser frequency. This process has a large dynamic range than
current control but is slower due to its mechanical nature. The PI control circuit produces both
current control and piezo control signals through their own sub-circuits. To accomplish this the error
signal is fed to both sub-circuits and a high pass filter ensures that only fast excursions (80 Hz and
above) reach the current controller. Because the current control is limited to high speed corrections, it

is unnecessary to include an integrator, as any errors that persist over time can be handled by the piezo
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controller. The piezo controller has infrastructure which allows it to accept an external user signal for
scannign laser frequency. This also allows the user to check the integrity of the lock by introducing a

known error.

Figure 13: PI feedback control circuitry. Left: PI circuit. Right: Selectable capacitor bank. Red-green
lines supply power while yellow-green lines carry the signal.

Because the lock must function with a number of possible laser systems, the control component
of the lock must be widely tunable. The inverting amplifiers and integrator of the control circuitry
are constructed with potentiometers and capacitor banks to individually control the gain of each
component. Capacitor banks were also constructed to create tunable filters on the outputs. The
circuit also features a signal monitor so that the DAC output can be easily read for debugging. Figure
13 shows the completed PI circuit and a selectable capacitor bank.

Low noise control is extremely important for a stable lock. Filtered voltage regulators on a separate
board power the circuit to avoid noise from the power supply. OP27 op-amps were used for their low
noise characteristics. The exception is the final summing amplifiers at the circuits output, which
are constructed from LT1498 operational amplifiers for their rail-to-rail capability and larger output
current.

Although a true assessment of the PI circuit’s effectiveness requires testing with an actual laser,
a preliminary test of the circuit was conducted. A square wave ’error signal’ was fed into the circuit,
and the output was recorded on an oscilloscope. For a mock square wave error signal, the proportional
control signal should yield a square wave, while the integral control signal should yield a triangle-like

waveform. As figure 14 confirms, these expected patterns can be observed via the oscilloscope traces,
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and the gains can be varied such that either the proportional or integral signal dominates.
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Figure 14: PID response examples. From left to right: integrated signal, proportional signal, mixed
signal. These various gain settings all produce the expected response for PI control.

The rightmost image is a trace of roughly mixed integral and proportional gain. We can conclude
from this check that the correct PI feedback signal is produced and that the gain of each sub-circuit
is tunable. Checks on the filters and monitoring components demonstrate that all parts of the circuit
are functional. The final task in assembling a useful PI controller is fixing the circuit within a rack-
compatible enclosure (Fig. 15) with independent power. The circuit may be tuned and monitored

from the front panel of the enclosure.
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Figure 15: PI front panel. The signal monitor outputs the DAC error signal input to the PI circuit.
Potentiometers and the integration capacitance switch provide gain adjustment of the various ampli-
fiers. Rotary capacitor selector banks filter the circuit’s output. Scan amplification and offset allow for
an added scanning signal to be adjusted. The lock switch allows the circuit to begin or cease feedback
control.

6 Lock System Assembly

The box that formerly contained the limiting amplifier, divider, and supporting electronics was de-
termined to be too small for the final locking system. Credit must be given to a previous researcher,
Lauren White, for assemling this earlier enclosure as well as configuring and testing its components.
A new 17’ x 17” box was selected to enclose the laser locking system. Figure 16 below displays the
current lock system installed in the new box (compare with Fig. 2). Power is supplied to the box
via an external +18V source. This power is distributed via three voltage regulator banks mounted
inside the box. The largest of these, located on the back wall of the enclosure supplies power to the
radio frequency systems, inducing the limiting amplifier, cooling fan, frequency divider, ROSA, and
RF amplifiers. The regulator bank inside a metal enclosure (grey) provides power to the DAC as well
as the buffer system. Because the buffers require 15V, which is beyond the +18V supply, a DC-to-DC

converter is required.
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Figure 16: Image of locking system. Displayed are functional components and power supplies. The
holes in the front of the box allow for future input/output ports and an Arduino LCD screen. Signal
flow is conformed with figure 2. The beat note entersl the limiting amplifier, then the divider, RF
amplifiers and bias-T prepare the signal for the FPGA. The FPGA output is converted to analog by
the DAC and then conditioned by the output filters and buffer.

The switching noise created by the converter is a major source of electromagnetic interference,
which is the reason for enclosing this regulator bank. To further reduce noise, the output of the
converter is equipped with a “Pi filter” which greatly attenuates noise at the converter’s switching
frequency without substantially reducing voltage. The final and smallest regulator bank powers the
bias-T and provides extra space for future regulators to power additional components if needed. The
aluminum lock box has no electrical contact with the circuit elements, including the regulators which
are in thermal contact with the box via non-conducting pads. Tape on the floor of the box prevents the
grounded enclosures of the two RF amplifiers (Mini-Circuits) from contacting the box. The outside of
the box included a power switch, LED power indicator, and a cut out space for a future Arduino LCD

screen, which is discussed further in the next section.
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7 Future Work and Conclusion

The optical receiver of the lock system has not yet been installed or tested. Once this is complete,
the system can be tested with a laser to determine its effectiveness. An operational lock that meets
the lab’s noise and speed standards will likely require laser-specific debugging, tuning, and tweaking
to succeed. Once basic laser control is achieved, several options exist to increase the lock system’s
functionality and ease of use. For a more robust lock the current 10 ms counting time of the FPGA is
appropriate for slow excursions, but could be augmented by a second frequency counter implemented
on the same FPGA. This counter could run in parallel with the current counter, but with a much
faster counting time. This faster count would be sent to a separate DAC to generate a faster error
signal that could be sent to the PI controller. This could greatly improve the lock’s ability to respond
to high speed noise.

In addition to improving the lock’s effectiveness, several changes could be made to make the lock
system easier to use. Currently the frequency offset must be input manually. Ideally, the target
frequency offset could be changed in real time by the lab’s computer control system. This could
be accomplished by an Ethernet compatible Arduino micro-controller programmed to translate the
frequency offset sent via ethernet into a bit-wise digital signal for the FPGA. A further advantage of
this approach is the Arduino’s ability to display relevant information, such as target frequency and
measured frequency, on the front of the box via a small screen. Ambitiously, an Arduino could control
every user input including counting time and divider setting. Options that could supplement or replace
a software based input include a numerical keypad on the box, or if time becomes an issue, simple
switches on the front panel of the box for an easier binary input. The divider setting and FPGA
counting time could also be set by external switches if the Arduino control route is not pursued. The
final useful way that the locking system could receive its target frequency is via an external reference
signal of the same frequency. The FPGA is already equipped to count frequency, so this part of the
code could be duplicated to count the target frequency as well. The supporting electronics could not
be used however, and more components may have to be added to ensure compatibility if the external
reference waveform is not compatible with the FPGA’s TTL logic. The goal of these proposed changes
is to make the lock closer to fully configurable without any need to open the enclosure. The result of

these efforts should be a flexible and useful tool for future atomic physics experiments.
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Appendix

Dataout
/*sends data out in a series of 16 single bit pulses and then sets LDAC hi when done
%

module Dataout (data_16bit, clk_data, output_lbit, LDAC);
input [15:0] data_lébit;
input clk_data;

output reg output_lbit;
output reg LDAC;

reg [4:0] num; //5-bits binary

initial begin
output_lbit = data_l6bit[15];
num = 5'b00000;
LDAC = 1'b0;
end
assign clk_data_test = clk_data;

always @ (posedge clk_data) begin
num = num + 1;
if (num <= 16) begin
LDAC <= 0;
output_lbit <= data_16bit[16-num]; //cycles through data in
from MSB to LSB

end
else if (num > 16) begin
output_1lbit <= 0; //Ian's Correction - fixes LDAC conflict /
output jumps. Formerly:"data_16bit[0]" instead of 0
LDAC <=1;
if (num == 17) begin
num <= 0;
end

end
end //end always block

endmodule

Figure 17: DataOut.v
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/*Top level module for calculating the difference between a target frequency and a
calculated frequency of an
input signal and sending output to the DAC (AD660)
target freq: input target frequency, for now use switches on FPGA
goes from top level module to Target match.v where the signal freq is
subtracted from it
also have option to display it using DisplaySelect.v which goes to HexDisplays.v
display select: input pushbutton to toggle between display options, for now set at
target frequency and signal frequency\
clock: 50 MHz internal clock
input signal: signal to be measured, represents beat note
display register: data to be displayed on HEX displays, goes from top level module to
HexDisplays.v
extra HEX: used to set extra HEX LEDs high, turning them off

counter.v : calculates frequency of input signal by counting rising edges for 10 ms
(possibly change this sample time in the future)
output is counter output = frequency of input signal
Target match.v : subtracts target freq - counter output to give freq diff (frequency
difference)

DisplaySelect.v : switches HEX display options, for now set between target freq and
input signal freqg

HexDisplays.v : turns data into instructions for which HEX LEDs to turn on (note O=on,
1=0ff)

ClockDivider.v: divides 50 MHz clock down to 5 MHz -- two 5 MHz clocks with a phase
offset created for DAC timing

Rescale.v: reformates freq diff from 16-bit number with extra bit for sign into a 16bit
number with bipolar info encoded

DataOut.v: sends reformatted number to DAC serially

freq diff is ultimate goal of these modules, will be sent to DAC

*/
module FrequencylLock(display select, clock, target freqg, input signal, display register,
extra HEX, LDAC, DAC clk, output 1lbit);

input [1:0] display select; //use two buttons to select Hex Display option

input clock; //use internal 50MHz clock to synchronize circuit

input [17:0] target freq; //need 18-bits binary to input target freq of up to 250MHz
//goal is to be able to handle 200MHz, should bits be mult. of 82

input input signal; //laser or function generator for testing

//output [15:0] freq diff; //16-bit binary output to send to DAC (AD660) -- still need
module to transmit data to DAC

output [48:0] display register; //6-digit decimal number on Hex display with an extra
digit to display the sign of freg diff

output [6:0] extra HEX; //used to turn off extra hex displays

output output 1lbit; //data output to DAC (SIN, pinl2)
output DAC clk; //DAC clock(CS, pin 14)
output LDAC; //tells DAC latch is loaded (LDAC pin 19)

wire [19:0] counter output;
wire [19:0] signal freg;
assign signal freq = counter output;//used to connect counter.v to Target match.v

wire [15:0] freq diff;

wire [15:0] freq diff output;

assign freq diff output = freq diff; //used to display frequency difference
wire [15:0] data input;

assign data input = freq diff; //connect freq diff calculation to DAC rescaling

wire [19:0] input data;
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wire [19:0] input data choice;
assign input data choice = input data; //used to connect data to DisplaySelect.v

wire extra bit;

wire sign_ disp;

assign sign disp = extra bit; //used to make freq diff bipolar
wire sign;

assign sign = extra bit;

wire data_ clk;
wire clk data;
assign clk data = data clk; //used to time data output from FPGA to S-in on DAC

wire [15:0] data to_ DAC;
wire [15:0] data 1l6bit;
assign data 16bit = data to DAC;//used to connect Rescale to DataOut

counter counter result(clock, input signal, counter output);

//call the counter module with the instance "counter result"

//to measure frequency of the input signal

Target match target result(target freq, signal freq, freq diff, extra bit);

//measure difference in input signal freqg and target freq

DisplaySelect DisplayChoice(display select, target freq, signal freq, freq diff output,

input data);

HexDisplays HexOutl (input data choice, display register, extra HEX, sign disp);

ClockDivider clock 5M(clock, DAC clk, data clk);//right now at 2.5MHz for testing

Rescale rescale data(data input, sign, data to DAC); //reformats data to be compatible

with DAC

DataOut data output(data 16bit, clk data, output 1lbit, LDAC); //sends data out serially

to DAC

endmodule
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//selects display for HEX using pushbuttons
//00=measured frequency, 01 = target frequency, 1l0=calculated frequency difference between
target and signal
module DisplaySelect(display select, target freq, signal freq, freq diff output, input data);
input [1:0] display select; //use switch to select display option
input [17:0] target freq; //input in top level module
input [19:0] signal freq; //input in top level module
input [15:0] freq diff output; //freq diff calculated by target match

output reg [19:0] input data; //will represent choice from display select to be
displayed by Hex Displays

initial begin
input data = 20'b00000000000000000000;
end

always begin
case (display select)
2'bll: input data <= signal freg;
2'b01: input data <= target freg;
2'b10: input data <= freq diff output;
endcase

end //end 2nd always block

endmodule
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1 // The HexDisplay module converts a 19-bit binary number into a 6-digit decimal display
2 module HexDisplays(input data, display register, extra HEX, sign);

3 input [19:0] input data;

4 input sign; //sign of freq diff

5

6 output reg [48:0] display register; //sign for first digit and then a 6 digit number
7 output reg [6:0] extra HEX; //used to set extra displays off (l=off, O=on)
8 reg [6:0] displayO;

9 reg [6:0] displayl;

10 reg [6:0] display?2;

11 reg [6:0] display3;

12 reg [6:0] display4;

13 reg [6:0] displayb;

14

15 reg [6:0] sign display;

16

17 reg [22:0] tmp division; //dummy var

18 reg [3:0] tmp remainder(O, tmp remainderl, tmp remainder2, tmp remainder3, tmp remainderi,

tmp remainder5;

19
20 // initialize the display (i.e. turn all the LEDs off: High = off, Low = on)
21 initial
22 begin
23 display register = 49'p111111111111111111111111111111111111111111111111%
24 extra HEX = 7'b1111111;
25 end
26 always begin
27 case (sign)
28 1'b0: sign display <= 7'b1111111; //display nothing for positive signal
29 1'bl: sign display <= 7'b0111111; //display minus sign for negative signal
30 endcase

31 end //end 1lst always block //used for displaying sign of freq difference
32 always

33 begin

34 // convert input data in units of counts/1.3ms to KHz

35 //tmp division = ((input data*10)/13);

36

37 //convert input data in units of counts/10ms to KHz

38 // conversion moved to counter module, tmp divison now just dummy var
39 tmp division = input data;

40

41 // 1ls display

42 tmp remainder(0 = tmp division % 4'bl1010;

43 display0 = output singledisplay 7bit(tmp remainder0) ;

44

45 // 10s display

46 tmp division = tmp division / 4'b1010;

47 tmp remainderl = tmp division % 4'b1010;

48 displayl = output singledisplay 7bit(tmp remainderl);

49

50 // 100s display

51 tmp division = tmp division / 4'b1010;

52 tmp remainder2 = tmp division % 4'bl010;

53 display2 = output singledisplay 7bit(tmp remainder2);

54

55 // 1000s display

56 tmp division = tmp division / 4'b1010;

57 tmp remainder3 = tmp division % 4'bl010;

58 display3 = output singledisplay 7bit(tmp remainder3);

59

60 // 10,000s display

61 tmp division = tmp division / 4'b1010;
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62 tmp remainder4 = tmp division % 4'b1010;
63 display4 = output singledisplay 7bit(tmp remainder4);
64

65 //100,000s display

66 tmp division = tmp division/ 4'b1010;

67 tmp remainder5 = tmp division % 4'b1010;
68 display5 = output singledisplay 7bit(tmp remainder)) ;
69

70 // eliminate zeros on the left

71 if(tmp remainder5 == 4'b0000)

72 begin

73 displayb = 7'b1111111;

74 if (tmp_remainder4 == 4'b0000)

75 begin

76 display4 = 7'b1111111;

77 if (tmp_remainder3 == 4'b0000)

78 begin

79 display3 = 7'b1111111;

80 if (tmp_remainder2 == 4'b0000)

81 begin

82 display2 = 7'b1111111;

83 if (tmp_remainderl == 4'b0000)
84 begin

85 displayl = 7'b1111111;

86 end

87 end

88 end

89 end

90 end

91 // Generate Display output

92 display register = {sign display,display5,display4,display3,display2,displayl,display0

bi

93

94 end

95

96 function [6:0] output singledisplay 7bit;

97 input [3:0] input number 4bit;

98 begin

99 output singledisplay 7bit= 7'b1111111;
100
101 if (input number 4bit == 4'b0000)
102 output singledisplay 7bit= 7'b1000000;
103
104 if (input number 4bit == 4'b0001)
105 output singledisplay 7bit= 7'b1111001;
106
107 if (input number 4bit == 4'b0010)
108 output singledisplay 7bit= 7'b0100100;
109
110 if (input number 4bit == 4'b0011)
111 output singledisplay 7bit= 7'b0110000;
112
113 if (input number 4bit == 4'b0100)
114 output singledisplay 7bit= 7'b0011001;
115
116 if (input number 4bit == 4'b0101)
117 output singledisplay 7bit = 7'b0010010;
118
119 if (input number 4bit == 4'b0110)
120 output singledisplay 7bit = 7'b0000010;
121
122 if (input number 4bit == 4'b0111)
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output singledisplay 7bit= 7'b1111000;

if (input number 4bit == 4'b1000)
output singledisplay 7bit = 7'b0000000;

if (input number 4bit == 4'b1001)
output singledisplay 7bit = 7'b0011000;

end
endfunction

endmodule
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1 /* divides 50 MHz clock into two 5 MHz clocks with a phase difference
2 One for DAC clock, the other for data output timing in DataOut.v */
3 module ClockDivider(clk50, DAC clk, data clk);
4 input clk50; // internal 50MHz clock
5 output reg DAC clk; //send out 5MHz clock
6 output reg data clk; //5 MHz clock with phase offset to time data entry
-
8 reg [3:0] counter; //register which contains timing for slow clock
9
10 initial begin
11 counter = 4'b0000;
12 DAC clk = 1'bO0O;
13 data clk = 1'b0;
14 end
15
16 always @ (posedge clk50) begin
17 counter = counter + 1;
18 if (counter < 2) begin
19 DAC clk <= 1;
20 data clk <=0;
21 end
22 if ((counter <5) && (counter >=2)) begin
23 data clk <= 1;
24 DAC clk <=1;
25 end
26 if ((counter >= 5) && (counter<?/)) begin
27 DAC clk <=0;
28 data clk <=1;
29 end
30 if ((counter >= 7) && (counter < 9))begin
31 data clk <= 0;
32 DAC clk <=0;
33 end
34 else if (counter ==9) begin
35 counter <= 0; //resets counter
36 end
37 end //end always block
38 endmodule
39
40 /*module ClockDivider (clk50, DAC clk, data clk);
41 input clk50; // internal 50MHz clock
42 output reg DAC clk; //send out 5MHz clock
43 output reg data clk; //5 MHz clock with phase offset to time data entry
44
45 reg [4:0] counter; //register which contains timing for slow clock
46
47 initial begin
48 counter = 5'b00000;
49 DAC clk = 1'b0;
50 data clk = 1'b0;
51 end
52
53 always @ (posedge clk50) begin
54 counter <= counter + 1;
55 if (counter < 10) begin
56 DAC clk <= 1;
57 if (counter >= 4) begin
58 data clk <= 1;
59 end
60 end
6l else if (counter >= 10) begin
62 DAC clk <=0;
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63 if (counter >= 13) begin
64 data clk <= 0;
65 end
66 if (counter == 19) begin
67 counter <= 0; //resets counter
68 end
69 end
70 end //end always block
71 endmodule*/
72
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//Measures frequency of input signal

//to change sample time, change values in 1lst always block

module counter(clock, input signal, counter output);
input clock; //reference clock -- for now at least, use internal 50 MHz clock
input input signal; //beat note frequency input to beat note counter

//For 10ms sample time:
output [19:0] counter output; // beat note counter output, 20-bits binary

reg [22:0] counttime test in;
//beat note input counter, gives number of counts/10ms, 23-bits binary

reg [19:0] counttime test out;
//beat note output counter, 20-bits binary
//gives number of counts/10ms counted by counttime test in

reg [19:0] counttime ref;
//reference clock counter, gives number of counts/10ms, 20-bits binary

reg ref count complete;
//ref clock counter has completed count to 10ms, 1 bit binary
// 5E5 oscillations (19bits binary)

assign counter output[19:0] = counttime test out[19:0];
//attach so beat note count total is sent to output display

initial
begin
counttime test in = 23'b00000000000000000000000C;
counttime test out = 20'b00000000000000000000;
counttime ref = 20'b00000000000000000000;
ref count complete = 1'b0;
end

always @ (posedge clock) begin //begin at low to high transition of 50 MHz clock
counttime ref = counttime ref + 1;
ref count complete = 0;
//1f (counttime ref == 16'b1111111111111111) //"stop count" at 65,535 beats of ref
clock
//1f (counttime ref == 19'b1111010000100100000) //"stop count" at 5E5 beats of ref
clock (10ms)
if (counttime ref == 500000) //count to 10 ms with 50 MHz clock
begin
counttime test out <= (counttime test in/10); //counttime test out gives number of
counts by counttime test in/ms
counttime ref <= 0;
ref count complete <= 1; //set high to indicate temp counter is full
end
end //end 1lst always block

always @ (posedge input signal or posedge ref count complete) begin
//begin at low to high transition of beat note signal
// or begin at low to high transition of complete reference count indicator

if (ref count complete == 1) begin
counttime test in <= 0;
end

else begin
counttime test in <= counttime test in + 1;
end
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end //end second always block
endmodule

counter.v
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1 /*sends data out in a series of 16 single bit pulses and then sets LDAC hi when done */
2 module DataOut (data 1lébit, clk data, output 1bit, LDAC);
3 input [15:0] data 16bit;
4 input clk data;
5
6 output reg output 1lbit;
7 output reg LDAC;
8
9 reg [4:0] num; //5-bits binary
10
11
12 initial begin
13 output 1bit = data 16bit[15];
14 num = 5'b00000;
15 LDAC = 1'b0;
16 end
17 assign clk data test = clk data;
18
19 always @ (posedge clk data) begin
20 num = num + 1;
21 if (num <= 16) begin
22 LDAC <= 0;
23 output lbit <= data lébit[l6-num]; //cycles through data in from MSB to LSB
24 end
25 else if (num > 16) begin
26 output lbit <= 0; //Ian's Correction - fixes LDAC conflict / output jumps.
Formerly:"data 16bit[0]" instead of 0
277 LDAC <=1;
28 if (num == 17) begin
29 num <= 0;
30 end
31 end
32 end //end always block
33
34 endmodule
35
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//Reformats data for the DAC

Project: FrequencyLock

//every value of 10000 in this module refers to the choice of 10 MHz frequency difference

for maximum voltage output to DAC
//Refer to final paper for rescaling algorithm
module Rescale(data input, sign, data to DAC);

input [15:0] data input; //15 bit number from switches

input sign; //extra bit for sign of input
output reg [15:0] data to DAC;

reg [15:0] scaling data; //register used to scale data input

reg [24:0] prescale calc; //target value times 10,000 used to avoid decimals in verilog

//25 bits binary to fit values above 10 MHz

initial begin
data to DAC = 16'b0000000000000000;
scaling data = 16'b0000000000000000;
end

always begin

if (data input > 10000) begin //set anything over the max threshold equal to 10,000

(ie. 10 MHz)
//to give max output

scaling data <= 10000; //anything about 10MHz will get max output (absolute

value)
case(sign)

1'b0: data to DAC <= positive conversion(scaling data); //scale
1'bl: data to DAC <= negative conversion(scaling data); //scale

endcase
end //end if statement

else if (data_input <=10000) begin
scaling data <= data_input;
case(sign)

1'b0: data to DAC <= positive conversion(scaling data); //scale
1'bl: data to DAC <= negative conversion(scaling data); //scale

endcase
end //end else statement
end //end ALWAYS block

function [15:0] positive conversion;
input [15:0] data input;
begin

prescale calc = (data input*32767)/10000+ 32768;

positive conversion = prescale calc[15:0];
end
endfunction

function [15:0] negative conversion;
input [15:0] data input;
begin

prescale calc = (32767*(10000 - data input))/10000;

negative conversion = prescale calc[15:0];
end
endfunction

endmodule
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//Calculates difference between target frequency and measured signal frequency
module Target match(target freq, signal freq, freq diff, sign);

input [17:0] target freq; //desire frequency for laser, input externally with switches,
18-bit binary number

input [19:0] signal freq; //measured frequency of laser in counter module

output [15:0] freqg diff;

output sign;

reg [15:0] subtraction; //register for subtraction operation

reg extra bit; //1-bit register to keep track of sign of the frequency difference
(O=positive, l=negative)

initial begin

subtraction = 16'b0000000000000000;
extra bit = 1'b0;

end

assign freq diff[15:0] = subtraction[15:0]; //attach output counter to output wires
assign sign = extra bit;

always begin

if (signal freq >= target freq) begin
subtraction <= signal freq - target freg;
extra bit <= 0;
end

else begin
subtraction <= target freq - signal freqg; //how to add in sign information?
extra bit <= 1;
end

end //end always block

endmodule

Page 1 of 1 Revision: FrequencyLock



