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Abstract

This thesis presents a simple theoretical model of a Feshbach resonance between two col-

liding ultracold atoms and experimental progress towards the observation of such a resonance

in 85Rb. On the theoretical side, the inter-atomic scattering potential is approximated by a

spherical square well potential. The potential supports a number of bounds states whose energy

depends on the width and depth of the well. In the low energy limit, only s-wave scattering

is present, and the associated scattering length for the process diverges if there is a bound

state at the dissociation limit: this is the hallmark of a Feshbach resonance. The model also

shows that the Feshbach resonance can be shifted to higher scattering energies by adjusting

the well depth, indicating the presence of a quasi-bound state above the dissociation limit. On

the the experimental side, a crossed dipole trap has been developed and used to trap ultra-

cold rubidium atoms. The performance of the trap is characterized, and the thesis describes

work towards upgrading it for an experiment to observe a Feshbach resonance in the F = 2,

mF = −2 hyperfine ground state of 85Rb.

1. Introduction

The objective of this project is to develop a theoretical understanding of Feshbach

resonances and observe them experimentally in a gas of ultracold atoms. Feshbach

resonances in ultracold atomic gases are scattering resonances in which the colli-

sion cross-section for two colliding atoms diverges for specific adjustments to the

interatomic potential, generally with a magnetic field. Feshbach resonances allow
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enormous control over the attractive and repulsive interactions of atoms, specifically

by controlling scattering cross sections. By tuning the magnetic field, the atoms can

associate into strongly interacting molecular states or dissociate as free unbound

atoms. Feshbach resonances are essential for reducing interactions in a BEC in-

terferometer and increasing those of strongly interacting superfluids [1]. Moreover,

Feshbach resonances may yield advancements in more practical experiments, such

as suppressing the frequency shifts of atomic clocks [2].

!

Figure 1: Cross section (a), scattering length (b), and molecular binding energy (c) of a generic
Feshbach resonance. Arrow in Figure 1 (c) indicates the direction of magnetic field sweeps
when creating cold molecules (adapted from reference [3]).

By definition, Feshbach resonances rely on scattering theory. A Feshbach reso-

nance is a strong enhancement in the collision cross section and scattering length

at a particular magnetic field value. As shown in Figure 1, colliding ultracold atoms

experience a dramatic enhancement of their collision properties at a Feshbach reso-

nance located at magnetic field B0: the scattering length and cross-section diverge.
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In this case, the scattering length, as, shown in red, is given by:

as(B) = abg(1−
∆

B −B0

) (1)

where as is the s-wave scattering length, abg is the background scattering length,

∆ is the width of resonance, and B0 is the magnetic field value of resonance. At

B = B0 the scattering length diverges, leading to very large elastic and inelastic

collision cross sections. In particular, the inelastic collisions between atoms increase

at a Feshbach resonance, which leads to a trap loss, an experimental signature of

a Feshbach resonance. The elastic cross section for s-wave two-body collisions is

calculated using the equation (2):

σ = 4πas
2α (2)

where σ is the cross section, as is the scattering length, α = 1 for non-identical

atoms, α = 2 for identical bosons, and α = 0 for identical fermions. Despite the

increase in inelastic collisions at the Feshbach resonance, careful ramping of the

magnetic field through the resonance (from the as < 0 side to the as > 0 side of

the resonance) can produce a weak molecular bond between the colliding atoms, as

shown in Figure 1 (c) [3].

Feshbach resonances provide an efficient method to producing ultracold molecules.

Although Feshbach molecules themselves are extremely “fragile,” Feshbach reso-

nance association is a potentially coherent method that creates molecules in a sin-

gle molecular state. Therefore, Feshbach molecules can be used as an intermediary

product to producing stable molecules in a single state. Moreover, understand-

ing Feshbach resonances may lead to advancements in studying dipolar quantum

gas, ultracold chemistry, molecular interferometry, and precision measurements of

fundamental symmetries [1]. The rest of the thesis is structured in the following
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manner: Section 2 introduces basic concepts of scattering theory, section 3 describes

the basic physics of Feshbach resonances using a toy model based on a spherical

square well inter-atomic potential, and section 4 discusses the experimental work

to set-up an experiment to observe a Feshbach resonance in ultracold 85Rb. In

conclude the thesis in section 5 by discussing prospects for future theoretical and

experimental work.

2. Development of Feshbach Resonance Theory

2.1 Scattering Theory

Figure 2: Basic setup of a system of two scattering atoms. The polar angle θ and azimuthal
angle φ are defined according to the cartesian coordinate system in the diagram.

Scattering theory is essential to understanding and modeling Feshbach resonances,

since Feshbach resonances are defined in terms of collisional cross sections and

scattering lengths. A basic setup of scattering systems is shown in Figure 2. The

setup consists of two particles colliding. If we move to the center of mass frame, a

system of two colliding atoms is equivalent to a reduced incoming wave, represented

as a red plane wave in Figure 2, interacting with a scattering potential and an

outgoing wave, represented as a blue spherical wave. In this setup, a couple of

measurements can be taken as below:
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Fi = the flux of particles in the incident waves over time

dΩ = solid angle

dn =number of scattered particles per unit time

Then, dn should obviously be proportional to Fi and dΩ:

dn = Fiσ(θ, φ)dΩ (3)

where σ = coefficient of proportionality. Since the potential is assumed to be

spherically symmetric, the φ component may be omitted. Then, dσ
dΩ

is defined as

the differential scattering cross section. More variables of interest can be defined as

we proceed, such as the scattering amplitude and the scattering length. However, a

simple relation between scattering amplitude and the scattering cross section may

be stated here. Scattering amplitude, denoted f(θ), in terms of the differential

cross section is:
dσ

dΩ
= |f(θ)|2 (4)

With these definitions at our disposal, the basic structure of scattering systems can

be visualized. In order to understand the overarching structure, the wave equations

at asymptotic limits are investigated. Assuming that the potential has essentially

no effect in the asymptotic limit, the Schrodinger equation becomes:

[
− ~2

2µ
∇2

]
ψ = Eψ (outside the influence of potential) (5)

where µ is the reduced mass of the potential and incoming particles, and ψ is the

wave function of inter-particle separation. Then, two forms of wave equations satisfy

this Schrodinger equation: an incoming plane wave and an outgoing spherical wave.

Therefore, the wave equation of the system at asymptotic limits should have the
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form:

ψ(r) ∼ eikz + f(θ)
eikr

r
(6)

where f(θ) is defined as the scattering amplitude. We use the partial wave analysis

and the phase shift of the scattered wave to determine the scattering amplitude

f(θ).

2.1.1 Partial Wave Analysis

The partial wave analysis constructs solutions of the scattering systems using de-

fined partial waves as a basis set. The partial waves are the solutions that satisfy

the radial Schrodinger equation near the potential. In this case, the partial waves

are spherical hankel functions of the first kind:

h
(1)
l (x) ≡ jl(x) + inl(x) (7)

Hankel functions are a valid basis set, since in the x→ +∞ asymptotic limit, they

behave like spherical waves:

lim
x→∞

h→ (−i)l+1 e
ikr

kr
(8)

Since the potential is spherically symmetrical, the resulting solution is:

ψ(r, θ) = A

{
eikz + k

∞∑
l=0

i(l+1)(2l + 1)alh
(1)
l (kr)Pl(cos θ)

}
(9)

where A is a general constant, and al is the amplitude of the spherical partial wave

with angular momentum l. Then, from (8) and (9), the scattering amplitude can

be found:

f(θ) =
∞∑
l=0

(2l + 1)alPl(cos θ) (10)
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2.1.2 Phase Shift

As shown in the previous section, the amplitudes of the incoming waves and out-

going waves are different. However, in order to maintain conservation of particle

number in each angular momentum channel l (elastic scattering), the norms of in-

coming and outgoing waves must be the same, so this difference in amplitudes can

be represented as a difference in phase instead: the outgoing wave is out of phase

with the incoming wave by a factor of 2δl. Then, the scattered wave can be written

solely in terms of phase 2δl. First, the incoming plane waves are written in terms

of spherical waves, using Rayleigh’s formula:

ψincident = eikz =
∞∑
l=0

il(2l + 1)jl(kr)Pl(cos θ) (11)

Multiplying the outgoing spherical component of (11) by phase component (e2iδ),

the equation becomes:

ψincident =
∑
l

A
2l + 1

2ikr

[
ei(kr+2δ) − (−1)le−ikr

]
Pl(cos θ) (12)

Using (10), the outgoing scattered wave can be represented as:

ψscattered =
∞∑
l=0

(2l + 1)alPl(cos θ)
eikr

r
(13)

As mentioned before, since phase shift is another way of representing the differ-

ence in amplitudes, the scattering amplitude can be written in terms of phases by

matching equation (12) and (13):

A
∞∑
l=0

2l + 1

2ik
Pl(cos θ)(e2iδl − 1) = A

∞∑
l=0

(2l + 1)alPl(cos θ) (14)

and simplifying (14),
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∞∑
l=0

al =
∞∑
l=0

1

k
eiδl sin δl (15)

Plugging (15) into (10), the scattering amplitude becomes:

f(θ) =
1

k

∞∑
l=0

(2l + 1)eiδl sin δlPl(cos θ) (16)

2.1.3 Scattering Length

The phase shift approach is particularly convenient, because it is directly connected

to the scattering length, usually denoted as. The scattering length is defined as the

s-wave limit of the equation (15). In the s-wave limit, the angular term l is 0, and k

approaches 0. The s-wave limit is highly relevant to this project, since the collision

of ultracold atoms only involves l = 0 terms. Then, equation (15) becomes:

as = − lim
k→0

[
1

k
eiδ0 sin δ0

]
(17)

Moreover, another useful variable can be defined in terms of the scattering length,

which is the scattering cross section. Since dσ
dΩ

= |f(θ)|2, the total scattering cross

section σ becomes:

σ =

∫
dσ

dΩ
dΩ =

∫
|f(θ)|2dΩ =

∫
1

k2
sin2 δ0dΩ =

4π

k2
sin2 δ0 (18)

Taking the limit as k approaches 0,

σ = 4πa2
s (19)

Example: Hard Sphere Scattering

An example relevant to Feshbach resonances is a hard sphere scattering and its

scattering length. Hard sphere scattering is defined by the potential:
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V =


0, if r > R.

∞, if r < R.

(20)

The radial schrodinger equation of this potential is clearly u(r) = A sin(kr + δ0).

The boundary condition of this potential becomes u(R) = 0, for the radial wave

equation u(r). In order for the wave equation to satisfy the boundary condition,

δ0 = −kR. Then, in the case of hard sphere scattering, the scattering length

becomes:

as = − lim
k→0

[
1

k
e−ikR sin(−kR)

]
' 1

k
(1 + ikR)kR ' R (21)

Then, the scattering cross section follows from (19):

σ = 4πR2 (22)

3. The Feshbach Resonance Toy Model

One of the major theoretical objectives is to make a toy model of Feshbach reso-

nances that explains the basic physics. Feshbach resonances occur when the atoms

encounter a bound state energy level that is almost unbounded. In order to inves-

tigate further, we need to understand bound states better. However, the molecular

potential energy is complicated to model, so we replace it with a simpler poten-

tial that still retains the basic physics we are interested in: we approximate the

internuclear molecular potential with a square well potential for studying collisions

between two identical ground state atoms. In particular, we focus on the scattering

behavior of the atoms when the well barely spports a bound state, which is the

reported condition for a Feshbach resonance. In this section, we first study the

bound states on the one-dimensional square well potential, which we then apply

to the determination of the s-wave bound states of the three-dimensional spherical

square well potential. Second, we investigate s-wave scattering from this spherical
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well potential and determine the dependence of the scattering phase shift δ0 and

scattering length as on the well parameters. Finally, we investigate the Feshbach

resonances of this spherical well potential.

3.1 1-D Square Well Potential

In order to investigate bound states, bound states of a square well are studied. The

energy levels of the system are calculated, as the well depth varies from shallow to

deep. Figure 3 plots the potential of the system as a function of position.

Figure 3: Potential of an Attractive Well

Dividing the system as shown in Figure 3, the Schrodinger equations of respective

regions are as follows:

− ~2

2m

∂2

∂x2
ψ = Eψ (Region 1 and 3) (23)

[
− ~2

2m

∂2

∂x2
− V0

]
ψ = Eψ (Region 2) (24)

Moreover, we define

k =

√
2m(E + V0)

~2
(25)
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k0 =

√
2mV0

~2
(26)

From equations above, the boundary conditions are derived:

∣∣∣∣sin(ka2
)∣∣∣∣ =

k

k0

for tan

(
ka

2

)
< 0 (27)

∣∣∣∣cos

(
ka

2

)∣∣∣∣ =
k

k0

for tan

(
ka

2

)
> 0 (28)

Equations (27) and (28) cannot be solved analytically, so these are solved graphi-

cally as shown in Figure 4. y1 and y2 in the figures are defined as:

y1 =


∣∣sin (ka

2

)∣∣ , if tan
(
ka
2

)
< 0.∣∣cos

(
ka
2

)∣∣ , if tan
(
ka
2

)
> 0.

(29)

y2 =
k

k0

(30)

As V0 increases, or as the well deepens, the number of solutions, represented by the

intersection points, increases. This signifies that the number of available energy

levels, or bound states of the system, increases as well.

In order to investigate the behavior of the bound state energies further, the energies

are plotted as the potential is scanned from V0 = 1 to V0 = 120. First, the solutions

are found computationally, using intersections. As shown in Figure 4 the solutions

are given as k values, and they are converted to energies using the equation below:

E =
~2

2m
(k2 − k2

0) (31)
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Figure 4: Plots of the boundary conditions (29) and (30) as the well depth (V0) increases. The
intersections are the bound state solutions in terms of k. The plots are for (a) V0 = 2, (b)
V0 = 20, (c) V0 = 100, and (d) V0 = 200. For this plot, ~ is set to 1, m is set to 1, and a is
set to 2. y1 is in blue, and y2 is in green. The circles are the intersections of the two boundary
conditions. So, they represent at which k the boundary conditions are satisfied.
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Figure 5: Bound state energies versus the depth of the well. For this plot, ~ is set to 1, m is
set to 1, and a is set to 2.

Figure 6: Close-up of the boxed portion of Figure 5
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Then, these energies are plotted against the varying potential, and Figure 5 is the

resulting plot. The energy levels exhibit discrete behavior: new energy levels appear

at distinctive well depths, as shown in Figures 5 and 6.

The square well potential is highly relevant to our toy model for Feshbach reso-

nances, since varying well depth is analogous to the varying potential created by

sweeping magnetic fields in Feshbach resonances. Thus, understanding and model-

ing attractive well energy levels is a first look at modeling bound states of Feshbach

resonances. The plots are generated by Matlab codes in Appendix A.1.

3.2 Spherical Well Potential

In order to study the phase shifts, a spherical well potential is studied. The spherical

well potential is given by the equation below:

V (r) =


−V0, if r < r0.

0, if r > r0.

(32)

Then, the Schrodinger equations of the system becomes:

[
− ~2

2m
∇2 − V0

]
ψ = Eψ if r < r0 (33)

− ~2

2m
∇2ψ = Eψ if r > r0 (34)

As particles encounter and interact with this potential and scatter they gain a phase.

Then, the system of wave functions that satisfy the Schrodinger equations (33) and

(34) will be the linear combination of the initial wave and the phase shifted scattered

wave. Denoting phase as δ, the radial compotnents of the solutions become, for

angular momentum l = 0:
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u(r) =


A sin(k′r) if r < r0.

B sin(kr + δ) if r > r0.

(35)

where

k =

√
2mE

~
(36)

and

k′ =

√
2m(E + V0)

~
. (37)

Combining equations (36) and (37),

k′2

2m
− V0 =

k2

2m
(38)

3.2.1 Spherical Well Bound states

From the continuity of the wave functions and their derivatives at r = r0, the

boundary condition becomes:

cot(k′r0) = − k
k′

(39)

Then, we may define two functions, y1 and y2:

y1 = cot(k′r0) (40)

y2 = − k
k′

(41)

Using the same methods as with square well potential, the intersections of y1 and

y2 are found, as V0 is scanned. The resulting plots are shown in Figure 7:
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Figure 7: Intersections of y1 and y2 at varying values of V0. y1 is in blue, and y2 is in red.
V0 = 2 for (a), V0 = 20 for (b), V0 = 200 for (c), and V0 = 300 for (d). The circles represent the
intersections of y1 and y2. So, they represent at what k the boundary conditions are satisfied.
For this plot, ~, m, and r0 are set to 1.

Then, converting the resulting k values of the intersections to energy, the E vs. V0

plot is created as below.
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Figure 8: E vs. V0. Bound state Energies as a function of the Well Depth. For this plot, ~, m,
and r0 are set to 1.

Figure 9: Close-up of the boxed portion of Figure 8. For this plot, ~, m, and r0 are set to 1.

Similar to the square well potential, the bound state energies occur at discrete
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values of the well depth V0, as shown in Figure 8. The plots are generated by

Matlab codes in Appendix A.2.

3.2.2 Spherical Well Potential Scattering

In order to determine the scattering amplitude for k → 0 and l = 0, another bound-

ary condition for the system can be derived, using phase shifts. From equation (38)

and the continuity of the wave functions and their derivatives at r = r0 requires

that

k′ cot(k′r0) = k cot(kr0 + δ) (42)

Solving above for δ yields an implicit expression:

tan δ =
k sin k′r0 cos kr0 − k′ sin kr0 cos k′r0

k′ cos k′r0 cos kr0 + k sin kr0 sin k′r0

(43)

Since the above equation cannot be solved explicitly, it is solved using numerical

methods. The phase δ is plotted against k, as shown in Figure 10.
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Figure 10: Phase δ vs. k at varying values of V0. Since V0 = q2/2m, V0 is varied by scanning
q. Each line represents a solution for a different value of q, starting at q = 0 and increasing in
steps of ∆q = 0.1 This result matches the phase plot of [8].

Each line of the plot represents phase as a function of k, δ(k) at varying V0. For

simplicity, we define V0 = q2/2m where q is a parameter with units of momentum.

Then, q is numerically scanned to plot each line of Figure 10. Figure 10 suggests

that the phase displays a discrete behavior, similar to energy. The plot is generated

by Matlab codes in Appendix A.3.

3.3 Scattering Length Plot

The definition of scattering length is given by (17). Equation (17) can be rearranged

to yield an equivalent definition of the scattering length:
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as = − lim
k→0

tan δ

k
(44)

The numerical solution of (43) illustrated in Figure 10 provides function of phase in

terms of k, δ(k). Then, δ(k) of Figure 10 can be used to numerically solve for the

scattering length. By setting k = 0.001 at varying values of V0 in Figure 10, solving

for tan δ/k, and plotting the resulting points, we attain the points in Figure 11.

Then, the points are fitted with the function:

as = − 1

V0 − 1.2324
(45)

This function is very similar to equation (1) that characterizes the behavior of atoms

at Feshbach resonances. Similar to (1), (45) has a basic structure of (constant)/(x

- constant). This result indicates that a Feshbach resonance can be modeled using

the spherical well potential, thus validating our choice of toy model.
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Figure 11: Scattering length vs. well depth (as vs. V0). The momentum k is set to 0.001. For
this plot, ~, m, and r0 are set to 1.

This plot is generated by Matlab codes in Appendix A.4.

3.3.1 Analytical Solution of the Scattering Length

While it is numerically confirmed that Feshbach resonances can be modeled using

the spherical well potential, the equation for scattering length of (1) can be also

analytically derived from the implicit expression for δ in terms of k in (43). Dividing

equation (43) by k, we obtain

tan δ

k
=

k sin k′r0 cos kr0 − k′ sin kr0 cos k′r0

k′k cos k′r0 cos kr0 + k2 sin kr0 sin k′r0

(46)

Then, using (44) and (46), the scattering length becomes:

as = − lim
k→0

tan δ

k
= − lim

k→0

k sin k′r0 cos kr0 − k′ sin kr0cosk
′r0

k′k cos k′r0 cos kr0 + k2 sin kr0 sin k′r0

(47)
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= − sin k′r0

k′ cos k′r0

+ lim
k→0

sin kr0

k
· r0

r0

· lim
k→0

k′ cos k′r0

k′ cos k′r0 cos kr0 + k sin kr0 sin k′r0

(48)

= −tan k′r0

k′
+ r0 (49)

Using the definition of k′, the limit of k′ as a function of V0 becomes as follows:

lim
k→0

k′ = lim
k→0

√
k2 + 2mV0 =

√
2mV0 (50)

Then, substituting (50) into (49),

as = −r0 tan r0

√
2mV0

r0

√
2mV0

+ r0 (51)

Defining φ = r0

√
2mV0,

as = −r0 tanφ

φ
+ r0 (52)

Feshbach resonances are defined by dramatic increases or divergences of scattering

lengths at particular magnetic field values. Since tanφ has divergences at (n+1)π/2,

(52) is series expanded at φ = π/2 as below:

as = r0

[
− 2

π(φ− π/2)
+

4

π2
+O(x− π/2)n

]
+ r0 (53)

Ignoring terms other than the Laurent term of the tangent expansion, the scattering

length becomes:

as = r0

[
− 2

π(φ− π/2)

]
+

(
4

π2
+ 1

)
r0 (54)

We may ignore other terms, because at divergences, the Laurent terms will domi-

nate. Substituting φ = r0

√
2mV0, the scattering amplitude is finally expressed in
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terms of the well depth:

as = r0

[
− 2

π(r0

√
2mV0 − π/2)

]
+

(
4

π2
+ 1

)
r0 (55)

Equation (55) has the basic components of equation (1). Since the series expansion

only holds near the divergence at π/2, (55) is a local descriptor of the scattering

length, as is (1). This analytically confirms that the Feshbach resonances can be

modeled from scattering of spherical well potential. This can be explained, because

the applied magnetic field used to trapped atoms creates potential that resembles

the spherical well potential.

Moreover, (55) can be generalized for all divergences, since tangent is divergent at

(2n+ 1)π/2.

as = r0

[
− 2

(2n+ 1)π(r0

√
2mV0 − (2n+ 1)π/2)

]
+

(
4

π2
+ 1

)
r0 (56)

3.3.2 Feshbach Resonance Dependence on Well Depth

Since the divergences occur at φ = (2n+1)π
2

, this implies:

φ = r0

√
2mV0 =

(2n+ 1)π

2
(57)

Thus, the divergences occur for well depths at:

V0 =
(2n+ 1)2π2

8mr2
0

(58)

This equation (58) is verified numerically. From the numerical model of Figure 11,

the well depths at which Feshbach resonances occur are identified and plotted

against n, as shown in Figure 12. Then, (58) is used as a fitting function for

the points. The resulting plot below verifies that (58) holds.
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Figure 12: Well depths at which Feshbach resonances occur for discrete n. The analytical
solution (58) is in green. For this plot, ~, m, and r0 are set to 1.

3.4 Feshbach Resonance at Finite Momentum

From 2.1.2, the scattering length is defined in terms of the limit below:

as = − lim
k→0

[
1

k
eiδ0 sin δ0

]
(59)

In section 3.3, the numerical plot of the scattering length and the well depth,

Figure 11, is obtained by scanning V0 and plotting the equation below at k = 0.001:

as(k) = −1

k
eiδ0 sin δ0 (60)

In this section, the scattering lengths at finite momenta are investigated. The cases

at k = 0.499, k = 0.99 are investigated in Figure 13 (b) and (c).
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Figure 13: Shifts in scattering lengths for finite momentum. For (a), k = 0.001, for (b),
k = 0.4990, and for (c), 0.999. For this plot, ~, m, and r0 are set to 1.

The fitting function for Figure 13 (a) is:

as = − 1

V0 − 1.2324
(61)

The fitting function for Figure 13 (b) is:

as = − 1

V0 − 1.3660
(62)

The fitting function for Figure 13 (c) is:

as = − 1

V0 − 1.8935
(63)

Figure 13 illustrates that Feshbach resonances shift to the right as momenta increase
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from near 0. The plot is generated by Matlab codes in Appendix A.4.

4. Experiment

The long term experimental objective of this project is the observation of a magnetic

Feshbach resonance. The basic experimental approach is to load µK-level ultracold

atoms into an optical dipole trap, and the subject them to a magnetic field. The

Feshbach resonance is identified by observing the trap lifetime, or loss rate, at

different magnetic field strengths. An unusually large loss rate, or short lifetime

indicates a magnetic Feshbach resonance.

4.1 Candidates

Table 1. Candidates and Feshbach Resonances

Type B (G) ∆ (G) States Sources

85Rb (boson-boson) 155 11.65 |2,−2 > +|2,−2 > [4]

39K-87Rb (boson-boson) 117.6 -1.3 |1,−1 > +|1,−1 > [5]

39K-87Rb (boson-boson) 247.9 0.28 |1, 1 > +|1, 1 > [5]

39K-87Rb (boson-boson) 318 7.6 |1, 1 > +|1, 1 > [5]

41K-87Rb (boson-boson) 49.5 -6.5 |2, 2 > +|2, 1 > [6]

41K-87Rb (boson-boson) 53.5 -39 |1, 1 > +|1, 1 > [6]

41K-87Rb (boson-boson) 87.5 -1.3 |1, 1 > +|1, 1 > [6]

40K-87Rb (fermion-boson) 545.4 1.2 [7]

Originally, 87Rb, 85Rb, and 39K atoms were considered for the experiment. More

specific groupings of these atoms are identified from the literature, as shown in

Table 1. B is the magnetic field at which Feshbach resonance is observed for the

corresponding atom pair, and ∆ is the width of resonance. In order to ensure the

observation of Feshbach resonances, pairs with wider width of resonances are se-

lected. Pairs with relatively low magnetic fields, around 150G to 200G, are also

preferred. Based on the available isotope and magnets, the experiment will be done

using 85Rb.
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4.2 Basic Experimental Setup

The basic experimental setup is described in Figure 14. The MOT, or the magneto-

optical trap, laser cools the atoms to 10 to 100 µK range. Then, the dipole trap

is constructed, because the dipole trap is not sensitive to varying magnetic fields.

The dipole trap is an intense, far off-resonance, conservative laser trap that can

operate at arbitrary magnetic field. The trap potential energy is proportional to

the laser intensity. The experimental setup is also shown in Figure 14. By sweeping

the magnetic field near a Feshbach resonance, which is represented as Bfeshbach in

Figure 14, there would be a loss of atoms. The atom losses most likely are due to

an increase in inelastic collisions between atoms at the resonances, an experimental

signature of Feshbach resonances.

4.3 Initial Dipole Trapping Result

The dipole trap is first constructed using 87Rb as shown in Figure 14.

MOT

Laser

Bfeshbach

Figure 14: Constructed MOT and Dipole Trap using 87Rb, and the Experimental Setup

4.4 Trapping of 85Rb

Figure 14 depicts the trapping of 87Rb atoms. As decided in 4.1, the experiment
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is conducted using 85Rb atoms. However, since the lab is most familiar with 87Rb,

87Rb atoms are used first to create a dipole trap to test the apparatus. Then, 85Rb

atoms are trapped.

Figure 15: (a) 85Rb MOT, (b) 85Rb Dipole Trap. The red ellipse indicates the location of the
very faint dipole trap.

First, the MOT of 85Rb is constructed as shown in Figure 15 (a). Then, using

lasers, the dipole trap is created with 85Rb as shown in Figure 15 (b). However,

this original dipole trap is not dense enough to observe Feshbach resonances. Thus,

the density of the dipole trap is increased using various methods, as shown in

Figure 16.
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Figure 16: Evolution of the 85Rb Dipole Trap. (a) the original dipole trap. (b) dipole trap with
compressed MOT and better alignment. (c) retro-reflected cross dipole trap. (d) retro-reflected
cross dipole trap with better alignment.

First, the MOT is compressed by increasing the applied magnetic field, and the

laser is aligned better. The resulting is shown in Figure 16 (b). Then, the laser

is retro-reflected to create a cross dipole trap. The experimental setup is shown

in Figure 18 (b). The result is shown in Figure 16 (c). In this figure, the dipole

trap became more compressed at the center. Then, the laser is better aligned so

that the retro-reflected beam had maximal impact on the cross dipole trap. The
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result is shown in Figure 16 (d). Moreover, the temperature measurement of the

dipole trap is taken by measuring the width of the thermal cloud. The temperature

measurement yields that the dipole trap is at around T = 8µK.
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Figure 17: Temperature Measurement of the Dipole Trap in Figure 16 (d). The slope of the
green fit yields the average velocity of the atoms in the thermal cloud. Then, this average
velocity is used to calculate temperature, since 1/2mv2 = 1/2kT . The slope of the fitting
function in green gives the average velocity of expansion, v = 31.5µm/ms. The red fit is used
to calculate the error bar. The calculated error is 8.76 %.

Through these processes, we were able to create a dense dipole trap, but the obser-

vation of Feshbach resonances would require all of the atoms to participate. At this

stage, only 20 percent of the atoms would contribute. In order to make all atoms

contribute, the atoms all have to be in the same desired state. The ideal atomic

state for 85Rb atoms for Feshbach resonance observation is F = 2 and mF = −2. In
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order to obtain the atoms in a single quantum state, optical pumping is required.

Furthermore, the platform for a second dipole trap laser is built and shown in

Figure 18 (b).

(a) (b) 

Figure 18: Experimental trapping laser setup. (a) Retro-reflected dipole trap scheme. (b)
Planned path of the 2nd dipole trap laser for further compression of atoms. The aluminum
platform features a hole for easy passage of the dipole trap laser beam

5. Conclusion

The objective of this project is to study and observe Feshbach resonances. There are

two theoretical cornerstones of Feshbach resonances: the scattering of cold atoms
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and the bound states. Thus, in order to develop a theoretical understanding of

Feshbach resonances, scattering theory and bound states are studied. The phase

shifts of a spherical well is both numerically and analytically modelled. The bound

states of the well potential are studied. On the experimental side, atom pairs with

favorable resonance widths and Feshbach magnetic field values were identified. The

MOT and the dipole trap using 85Rb and 87Rb are constructed.

This study will facilitate the future observation of Feshbach resonance. Once the

Feshbach resonances are observed, the association of atoms into molecular states

can be investigated. On the theory side, the theory of Feshbach molecules may be

investigated. The control of the resonance width in Feshbach resonances can also

be a theoretical endeavour.
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A. Appendix- Source Codes

7.1 Matlab Codes for 1-D Attractive Well

function [E,rtx,rty,y1,y2,k] = attr_well(V_0)

%from the boundary condition, this function solves for energies, and

%intersections at varying well depths

m=1;%mass=1

a=2;%radius of well=2

start=0;

finish=10*pi/a;

step=.001;

k=start:step:finish;

%momentum scanned

k_0=sqrt(2*m*V_0);

%hbar set to 1

A=abs(cos(k.*a./2));

B=abs(sin(k.*a./2));

C=sign(tan(k.*a./2));

y1=A.*((1+C)./2)+B.*((1-C)./2);

%boundary condition

y2=k/k_0;

%another boundary condition

[rtx,rty]=rootfinder(k,y1,y2,step);

%y1 and y2 intersections, or where the boundary conditions are satisfied

%scan V_0 from 0 to 200

E=solve_for_E(m,k_0,rtx);

E=rid_the_doubles(E);

end
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function [rootx, rooty] = rootfinder(k,f1,f2,step)

%make sure f1, f2, indept_var all have the same size!!!

%this function finds "roots," or more accurately, intersections of two given

%functions

[t,s]=size(f1);

if s<t

s=t;

end

%so it doesnt matter if i pass an array or a vector

rootx=zeros(1,20);

rooty=zeros(1,20);

index=1;

for i=1:s

if abs(f1(i)-f2(i))<(step)

rootx(index)=k(i);

rooty(index)=f2(i);

index=index+1;

end

end

rootx=rootx(1:index-1);

rooty=rooty(1:index-1);

end
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function [E] = solve_for_E(m,k_0,rtx)

% this function solves the resulting momentum intersections to energies.

[s,t]=size(rtx);

if t<s

t=s;

end

%so it doesnt matter if i pass an array or a vector

E=zeros(1,t);

for i=1:t

E(i)=-((rtx(i))^2-(k_0)^2)/2*m;

end

end
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function [E] = rid_the_doubles(E)

% this function gets rid of double counted intersections.

%if the spacing between two intersections is too small,

% then it only counts one intersection.

[x,y]=size(E);

if y<x

y=x;

end

%so it doesnt matter if i pass an array or a vector

for i=1:(y-1)

if abs(E(i)-E(i+1))<.6

E(i+1)=E(i);

end

end

E=unique(E);

end
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The function below generates the Figure 4.

function [] = test_attr_well()

%this function plots the boundary conditions and intersections

%at different values of V_0

[E,rtx,rty,y1,y2,k]=attr_well(2);

plot_intersections(k,y1,y2,rtx,rty,1)

disp(’(on figure 1) E when V_0=2 is: ’)

disp(E)

[E,rtx,rty,y1,y2,k]=attr_well(20);

plot_intersections(k,y1,y2,rtx,rty,2)

disp(’(on figure 2) E when V_0=20 is: ’)

disp(E)

[E,rtx,rty,y1,y2,k]=attr_well(100);

plot_intersections(k,y1,y2,rtx,rty,3)

disp(’(on figure 3) E when V_0=100 is: ’)

disp(E)

[E,rtx,rty,y1,y2,k]=attr_well(200);

plot_intersections(k,y1,y2,rtx,rty,4)

disp(’(on figure 4) E when V_0=200 is: ’)

disp(E)

[E,rtx,rty,y1,y2,k]=attr_well(300);

plot_intersections(k,y1,y2,rtx,rty,5)

disp(’(on figure 5) E when V_0=300 is: ’)

disp(E)

end
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function [] = plot_intersections(k,y1,y2,rtx,rty,number)

%this function plots two bdy conditions, limit, roots.

figure(number)

plot(k,y1)

hold on

plot(k,y2,’g’)

hold off

hold on

plot(k,1,’r’)

hold off

hold on

scatter(rtx,rty,’o’,’m’)

hold off

end
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The function below generates the Figures 5 and 6.

function [] = E_vs_V(number)

%this function plots the bound state energies vs the well depth, V_0.

step=.01;

V_0=2:step:70;

[~,t]=size(V_0);

V=zeros(1,10*t); %scans V_0

E=zeros(1,10*t);

%as we solve for the energy levels, we will be filling this vector.

n=1;

m=1;

for i=1:t

[E_0,~,~,~,~,~]=attr_well(V_0(i));

[~,y]= size(E_0);

a=1;

for l=m:(m+y)

V(l)=V_0(i);

end

m=m+y;

for j=n:(n+y)

if a<=y

E(j)=E_0(a);

a=a+1;

end

end

n=n+y;

end

[~,d]=size(E);

V=V(1:d);

figure(number)

scatter(V,E,5,’.’)

hold on

E1=0;

plot(V,E1)

hold off

end
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7.2 Matlab Codes for 3-D Attractive Well Potential

function [E,rtx,rty,y1,y2,k] = attr_well(V_0)

%this function solves for intersections, or at what

%values of momentum the boundary conditions are satisfied.

m=1;

%mass=1

a=2;

%radius of well=1

start=0;

finish=10*pi/a;

step=.001;

k=start:step:finish;

k_p_squared=V_0-k.^2;

k_p=sqrt(k_p_squared);

k_p=real(k_p);

%the boundary conditions, y1 and y2

y1=cot(k_p.*a);

y2=-k./k_p;

%intersections

[rtx,rty]=rootfinder(k,y1,y2,step*30);

%scan V_0 from 0 to 200

E=solve_for_E(rtx);

E=rid_the_doubles(E);

end

This function uses the same functions solve for E, rid the doubles, and rootfinder

from Appendix A.1. Using the same function test attr well generates Figure 7.
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The function below plots Figures 8 and 9.

function [] = E_vs_V(number)

%this function plots the bound state energies at different values of V_0.

step=.01;

V_0=0.6:step:60;

%scans V_0

[~,t]=size(V_0);

V=zeros(1,10*t);

E=zeros(1,10*t);

n=1;

m=1;

for i=1:t

[E_0,~,~,~,~,~]=attr_well(V_0(i));

[~,y]= size(E_0);

a=1;

for l=m:(m+y)

V(l)=V_0(i);

end

m=m+y;

for j=n:(n+y)

if a<=y

E(j)=E_0(a);

a=a+1;

end

end

n=n+y;

end

[~,d]=size(E);

V=V(1:d);

V1=0:step:60;

figure(number)

scatter(V,E,5,’.’)

hold on

E1=0;

plot(V1,E1)

hold off

axis([0 60 -1 30])
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figure(number+1)

scatter(V,E,5,’.’)

axis([0 5 -1 2])

hold on

E1=0;

plot(V1,E1)

hold off

end
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7.3 Matlab Codes for Phase Plot

The Matlab function “phase” generates Figure 10.

function [] = phase()

%This function plots the phases vs momentum at varying well depths.

m=1;%mass set to 1

a=1;%radius of the well set to 1

start=0;

finish=5*pi/a;

step=.001;

k=start:step:finish;

q=0:0.1*pi:5*pi;

n=(q-rem(q,pi))./pi;

[~,c]=size(n);

l=round(q./pi);

figure;

for i=1:c

done=0;

V_0=(q(i).^2)./(2*m);

[delta]=sph_attr_well2(V_0);

while done==0

[delta,done]=scale(delta,1);

end

if i>1

if l(i)-l(i-1)==1

delta=delta+(2*l(i)-1)*pi/2;

else

delta=delta+l(i)*pi;

end

end

hold on

plot(k,delta)
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hold off

end

end
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function [y3] = sph_attr_well2(V_0)

%this function determines the boundary condition using phase shifts.

a=1;%radius=1

start=0;

finish=5*pi/a;

step=.001;

k=start:step:finish;

k_p=sqrt(k.^2+2*V_0);

S_p=sin(k_p.*a);

C=cos(k.*a);

S=sin(k.*a);

C_p=cos(k_p.*a);

A=k.*S_p.*C;

B=k_p.*S.*C_p;

D=k_p.*C_p.*C;

E=k.*S.*S_p;

%boundary conditions

y1=(A-B)./(D+E);

y3=atan(y1);

end
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function [A,done] = scale(A,step)

%this function scales the phase by getting rid of discontinuities

%that arise from taking arctangent

[~,b]=size(A);

done=0;

c=0;

for i=1:b

if (i+1)>b

done=1;

c=-1;

return;

end

if abs(A(i)-A(i+1))>step

change=abs(A(i)-A(i+1));

c=i;

break;

end

end

if (c>0)&&(c+1<b)

for i=c+1:b

A(i)=A(i)-change;

end

end

end
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7.4 Matlab Codes for Scattering Length Plot

function [V,A] = iterate_pi_slength(number,n)

%this function solves for the scattering length from phase

a=1;%radius=1

m=1;%mass=1

start=0;

finish=5*pi/a;

step=.001;

k=start:step:finish;%momentum scanned

start=number*pi-2;

finish=number*pi+2;

step=.0003*pi/a;

q=start:step:finish;%q is used to scan V_0

[~,c]=size(q);

V=zeros(1,c);

A=zeros(1,c);

j=1;

for i=1:c

done=0;

V_0=(q(i).^2)./(2*m);

[delta]=sph_attr_well2(V_0);

delta=delta+number*pi;

y=tan(delta)./k;

V(j)=V_0;

A(j)=y(n);

j=j+1;

end

end
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function [j,x] = diverge_at(V,A)

%this function figures out where the input function diverges.

[~,b]=size(A);

%j=index

j=0;

for i=1:b

if (sign(A(i)) ~= sign(A(i+1)))&&(abs(A(i)-A(i+1))>100)

j=i;

break;

end

end

x=(V(j)+V(j+1))/2;

end
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The function below generates the Figures 11 and 13.

function [] = A_vs_V()

[V,A]=iterate_pi_slength(1,2);

figure;

scatter(V,A,’.’,’b’);

[~,x_0]=diverge_at(V,A);

hold on

x=0:.001:200;

plot(x, -1./(x-x_0),’b’)

x_0

hold off

[V,A]=iterate_pi_slength(2,2);

figure;

scatter(V,A,’.’,’b’);

[~,x_0]=diverge_at(V,A);

hold on

x=0:.001:200;

plot(x, -1./(x-x_0),’b’)

x_0

hold off

[V,A]=iterate_pi_slength(3,2);

figure;

scatter(V,A,’.’,’b’);

[~,x_0]=diverge_at(V,A);

hold on

x=0:.001:200;

plot(x, -1./(x-x_0),’b’)

x_0

hold off

[V,A]=iterate_pi_slength(4,2);

figure;

scatter(V,A,’.’,’b’);

[~,x_0]=diverge_at(V,A);

hold on

x=0:.001:200;

plot(x, -1./(x-x_0),’b’)

x_0

hold off
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[V,A]=iterate_pi_slength(5,2);

figure;

scatter(V,A,’.’,’b’);

[~,x_0]=diverge_at(V,A);

hold on

x=0:.001:200;

plot(x, -1./(x-x_0),’b’)

x_0

hold off

end
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