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ABSTRACT

This thesis presents the first experimental demonstration of a two-wire AC

Zeeman trap on an atom chip. Our novel trap is generated by a local minimum in

AC Zeeman energy, which is a resonant, bipolar, state-dependent atomic energy

shift produced by rotating magnetic fields with frequencies near hyperfine

transitions. Using less than one watt of power, we demonstrate trap frequency on

the order of a few hundred Hz, trap depth about 5 µK, and quarter-second

lifetimes. We also demonstrate that high gradients in this energy, as near an atom

chip, can produce a spin-state selective force greater than gravity for ultracold

rubidium atoms. Motivated by trapped atom interferometry, this proof of principle

AC Zeeman trap can also augment atom and ion experiments as a dynamic

spin-dependent potential. Different parameters in the current arrangement can

produce regions of linear gradient, flat saddle points, square- and donut-shaped

traps, offering a new set of tools for atom chip experiments. This thesis also

presents the relevant dressed atomic theory, four AC Zeeman trap designs, Rabi

frequency measurements, numerical trap simulations, and the AC skin effect in

wide rectangular wires.



TABLE OF CONTENTS

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

CHAPTER

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Foundation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 AC Zeeman Overview . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Toward Atom Interferometry . . . . . . . . . . . . . . . . . . . . . 5

1.4 Other Applications . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.5 Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.6 Supplements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 The Apparatus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1 General Description . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 A Typical Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1 Magneto-Optical Trap (MOT) . . . . . . . . . . . . . . . . 14

2.2.2 Optical Molasses and Pumping . . . . . . . . . . . . . . . 16

2.2.3 Magnetic Transport . . . . . . . . . . . . . . . . . . . . . . 17

2.2.4 Atom Chip . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.5 Radiofrequency Evaporation . . . . . . . . . . . . . . . . . 17

2.2.6 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.7 DC Stern-Gerlach Separation . . . . . . . . . . . . . . . . 19

i



2.2.8 Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3 Optical Dipole Trap . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4 Thermal Stabilization Strategies . . . . . . . . . . . . . . . . . . . 23

2.5 Cinderella and Other RF Sweeping Sources . . . . . . . . . . . . . 27

2.6 FlexDDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.7 Fluffy, the Three-headed Amplifier . . . . . . . . . . . . . . . . . 33

2.8 Evaporation Trace Switch . . . . . . . . . . . . . . . . . . . . . . 34

2.9 Chip VNA Measurements . . . . . . . . . . . . . . . . . . . . . . 37

2.10 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3 Dressed Atom Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.1 Hyperfine Basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2 Transition Elements . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3 Two-Level Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.4 AC Zeeman Force . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.5 Five-level Eigenstate Curves . . . . . . . . . . . . . . . . . . . . . 57

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4 Rabi Frequency Measurement . . . . . . . . . . . . . . . . . . . . . . . 61

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.2 Rabi Measurement with the Force Experiment . . . . . . . . . . . 64

4.2.1 Flopping Experiment . . . . . . . . . . . . . . . . . . . . . 65

4.2.2 Fitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.2.3 Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.2.4 Rabi Gradient . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.2.5 “Sag” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.3 Rabi Measurement with the Trap Experiment . . . . . . . . . . . 75

4.3.1 Push Triangulation . . . . . . . . . . . . . . . . . . . . . . 76

ii



4.4 Compiled Measurements . . . . . . . . . . . . . . . . . . . . . . . 78

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5 RF AC Zeeman Force . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.2 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.3 AC Stern-Gerlach . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.4 Time Evolution of States . . . . . . . . . . . . . . . . . . . . . . . 92

5.4.1 Detuning Effects . . . . . . . . . . . . . . . . . . . . . . . 96

5.4.2 Power Effects . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.4.3 Beyond Landau-Zener . . . . . . . . . . . . . . . . . . . . 99

5.4.4 Outlook for Trapping . . . . . . . . . . . . . . . . . . . . . 100

5.5 Rabi and Rabi Gradient . . . . . . . . . . . . . . . . . . . . . . . 100

5.5.1 Background BDC Gradient . . . . . . . . . . . . . . . . . . 102

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6 Trap Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.1 Pedagogical Explanation . . . . . . . . . . . . . . . . . . . . . . . 105

6.2 AC Zeeman Trap Simulation . . . . . . . . . . . . . . . . . . . . . 106

6.2.1 Finding Linear Gradients . . . . . . . . . . . . . . . . . . . 111

6.3 Effect of Detuning . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.4 Trap Location Theory . . . . . . . . . . . . . . . . . . . . . . . . 114

6.4.1 Two-wire Trap . . . . . . . . . . . . . . . . . . . . . . . . 115

6.4.2 Two-Microstrip Trap . . . . . . . . . . . . . . . . . . . . . 118

6.4.3 Three-Wire Trap . . . . . . . . . . . . . . . . . . . . . . . 119

6.4.4 Three-Microstrip Trap . . . . . . . . . . . . . . . . . . . . 121

6.5 Middle-field Seekers . . . . . . . . . . . . . . . . . . . . . . . . . . 123

6.6 Pyramidal Trap . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

iii



6.7 Trap Schemes Using the Existing Atom Chip . . . . . . . . . . . . 128

6.7.1 Three-Wire Scheme . . . . . . . . . . . . . . . . . . . . . . 130

6.7.2 Radiofrequency vs. Microwave Comparison . . . . . . . . . 131

6.7.3 AC Skin Effects in Modeling . . . . . . . . . . . . . . . . . 133

6.7.4 Two Wire Trap: U-U / U-Z comparison . . . . . . . . . . . 134

6.7.5 Decision . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

6.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

7 RF AC Zeeman Trap Demonstration . . . . . . . . . . . . . . . . . . . 140

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

7.2 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

7.2.1 AC Zeeman Energy . . . . . . . . . . . . . . . . . . . . . . 145

7.2.2 RF Magnetic Near Field . . . . . . . . . . . . . . . . . . . 146

7.2.3 Trap Simulation . . . . . . . . . . . . . . . . . . . . . . . . 148

7.3 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

7.3.1 Low-Power Field Mapping . . . . . . . . . . . . . . . . . . 153

7.3.2 Dipole and Ioffe End-capping . . . . . . . . . . . . . . . . 156

7.3.3 Throw from F=2 and Catch in F=1 . . . . . . . . . . . . . 156

7.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

7.4.1 Trap Frequencies . . . . . . . . . . . . . . . . . . . . . . . 159

7.4.2 Trap Lifetimes . . . . . . . . . . . . . . . . . . . . . . . . . 161

7.4.3 Methods of Evaporation . . . . . . . . . . . . . . . . . . . 165

7.5 Trap Position Control . . . . . . . . . . . . . . . . . . . . . . . . . 169

7.6 Lower Resonance Data . . . . . . . . . . . . . . . . . . . . . . . . 170

7.7 Extra Phase Effects . . . . . . . . . . . . . . . . . . . . . . . . . . 170

7.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

iv



8 AC Skin Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

8.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

8.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

8.3 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

8.3.1 Pedagogical Explanation . . . . . . . . . . . . . . . . . . . 184

8.3.2 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . 185

8.4 Experimental Method . . . . . . . . . . . . . . . . . . . . . . . . . 186

8.4.1 Pickup coil . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

8.4.2 Measurement Theory . . . . . . . . . . . . . . . . . . . . . 189

8.4.3 Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . 190

8.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

8.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

8.7 AC Skin Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . 198

8.7.1 Analytic Forms . . . . . . . . . . . . . . . . . . . . . . . . 198

8.7.2 The Counterflow Effect . . . . . . . . . . . . . . . . . . . 200

8.7.3 Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . 202

9 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

9.1 The Proposed Interferometer . . . . . . . . . . . . . . . . . . . . . 206

9.2 Chip Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

9.3 Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

APPENDIX A
Five-level Hamiltonian Derivation . . . . . . . . . . . . . . . . . . . . . . . 210

APPENDIX B
Microwave Lattice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

APPENDIX C
Rabi Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

v



VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242

vi



ACKNOWLEDGMENTS

This work could not have been possible without a village of support.
Many thanks to:
My parents for giving my the freedom to pursue this career path.
The wonderful faculty and staff of the W&M physics department for their
continued support and accommodation of all their students.
Seth Aubin for advising me with this project and supplying the lab with pounds of
dark chocolate and tea over the years.
Previous graduate students in this lab (AJ, Charlie, Austin, Megan, Jim), who
created a stable apparatus for future students to experiment with.
Shuangli Du for years of stimulating conversations and technical support.
Joe Karpie for helping find a solution to the DDS slope problem
Dave Lahneman for helping measure resistivity in the AC skin conductor.
Josh Erlich and Wouter Deconinck for creating the Small Hall Makerspace.
Funding for this project at various times came from W&M, AFOSR, DTRA, NSF,
and VMEC.
Dennis Manos for securing funds for a replacement laser when we needed it.

vii



For Sarah and the boys

viii



LIST OF TABLES

2.1 Timing sequence of a typical experimental cycle. . . . . . . . . . . . . 15

4.1 Rabi Frequency measurements for the ACZ force experiment . . . . . 78

4.2 Rabi Frequency measurements for the ACZ trap experiment . . . . . 78

8.1 Measured ‘Skin Width’ values, theory vs. experiment . . . . . . . . . 194

ix



LIST OF FIGURES

1.1 A cartoon and photo of the experiment, looking up at the atom chip. 3

1.2 Cartoon diagrams of atom interferometry. . . . . . . . . . . . . . . . 7

2.1 Images of the Apparatus . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Hyperfine levels and optical transitions in rubidium-87 . . . . . . . . 16

2.3 A 3-D cartoon of the atom chip and dipole trap. . . . . . . . . . . . . 18

2.4 Simulated DC chip trap . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5 Images of the Apparatus . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.6 Dipole trap wander with temperature . . . . . . . . . . . . . . . . . . 26

2.7 Analysis of multiplied DDS signal . . . . . . . . . . . . . . . . . . . . 29

2.8 Cinderella’s Webpage . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.9 Cinderella’s output spectrum . . . . . . . . . . . . . . . . . . . . . . 31

2.10 FlexDDS graphical user interface . . . . . . . . . . . . . . . . . . . . 33

2.11 Photo and schematic of Fluffy, the RF system . . . . . . . . . . . . . 35

2.12 Schematic diagram and image of atom chip traces . . . . . . . . . . . 36

2.13 VNA measurement of relevant chip wires at high frequencies . . . . . 37

2.14 VNA measurement of relevant chip wires at low frequency . . . . . . 38

3.1 DC Zeeman energy for ground hyperfine states . . . . . . . . . . . . . 43

3.2 Two-Level AC Zeeman energy and population . . . . . . . . . . . . . 54

3.3 Bloch sphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.4 Five- and three-level AC Zeeman states . . . . . . . . . . . . . . . . . 59

4.1 Atom data fit for a Rabi frequency measurement . . . . . . . . . . . . 67

4.2 Example of Rabi flopping with fits from the force experiment . . . . . 69

4.3 Chi-squared values for Rabi frequency fits . . . . . . . . . . . . . . . 70

4.4 Rabi gradient measurements . . . . . . . . . . . . . . . . . . . . . . . 73

4.5 All Rabi flop measurements with fits from the trap experiment . . . . 76

4.6 Triangulation of AC Zeeman trap . . . . . . . . . . . . . . . . . . . . 77

5.1 Illustration of intra-manifold hyperfine transitions . . . . . . . . . . . 82

x



5.2 AC Zeeman energy curves . . . . . . . . . . . . . . . . . . . . . . . . 84

5.3 A cartoon schematic of the ACZ force experiment . . . . . . . . . . . 85

5.4 High BDC AC Zeeman energy calculations . . . . . . . . . . . . . . . 86

5.5 Timing diagram for the main push/pull experiment . . . . . . . . . . 87

5.6 AC Zeeman force data and theory, from negative detuning . . . . . . 88

5.7 AC Zeeman force data and theory, from positive detuning . . . . . . . 89

5.8 AC Stern-Gerlach demonstration . . . . . . . . . . . . . . . . . . . . 93

5.9 Timing diagram for the AC Stern-Gerlach . . . . . . . . . . . . . . . 93

5.10 Sample data of state mixing . . . . . . . . . . . . . . . . . . . . . . . 95

5.11 Timing diagram for the state mixing experiment . . . . . . . . . . . . 95

5.12 Detuning dependence of Tcross . . . . . . . . . . . . . . . . . . . . . . 97

5.13 State mixing over power . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.14 Sample Rabi flopping . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.15 Rabi gradient measurement . . . . . . . . . . . . . . . . . . . . . . . 102

6.1 Pedagogical trap illustration . . . . . . . . . . . . . . . . . . . . . . . 105

6.2 AC Zeeman trapping potential surfaces . . . . . . . . . . . . . . . . . 107

6.3 AC Zeeman two-trace trap simulations, from MATLAB GUI . . . . . 108

6.4 AC Zeeman three-trace trap simulations, from MATLAB GUI . . . . 109

6.5 Vertical trap profile, showing linear gradient . . . . . . . . . . . . . . 112

6.6 Illustration of detuning’s effect on trap profile . . . . . . . . . . . . . 113

6.7 Diagram of the multi-wire trap geometries considered . . . . . . . . . 114

6.8 Trap location for two-wire and two-microstrip cases . . . . . . . . . . 117

6.9 Plot of trap height vs. phase in two-wire and two-microstrip cases . . 119

6.10 Trap location for three-wire and three-microstrip cases . . . . . . . . 122

6.11 Simulations of the middle-field seeker AC Zeeman trap . . . . . . . . 124

6.12 Calculations of AC Zeeman energy ‘medium-field seeking’ of the |+〉
state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.13 Simulations of the pyramid trap . . . . . . . . . . . . . . . . . . . . . 126

6.14 Estimate of current from applied RF power . . . . . . . . . . . . . . . 129

6.15 Comparison of RF and µw for trapping in the three-wire scheme . . . 131

6.16 Comparison of AC Skin approximations . . . . . . . . . . . . . . . . . 132

6.17 Comparison of the U-U and U-Z trap depth vs. detuning . . . . . . . 135

6.18 Comparison of trap depth vs. distance to chip . . . . . . . . . . . . . 137

7.1 Evidence of opposite-mF trapping, via oscillation data . . . . . . . . 142

7.2 DC and AC Zeeman atomic states and energies . . . . . . . . . . . . 144

xi



7.3 Pedagogical trap explanation and sample AC Zeeman trapping po-

tentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

7.4 Cartoon schematic diagram of the experiment, and timing diagram . 151

7.5 Rabi maps across a cycle of phase . . . . . . . . . . . . . . . . . . . . 153

7.6 Rabi maps of F+ = 2 and F− = 1, for two phases . . . . . . . . . . . 155

7.7 Evidence of opposite-mF trapping, via oscillation data . . . . . . . . 160

7.8 Measurements of trap frequency vs. applied RF frequency . . . . . . 162

7.9 Measurements of trap lifetime vs. applied RF frequency . . . . . . . . 163

7.10 Three demonstrations of forced evaporation in an AC Zeeman trap . 166

7.11 Phase-space density of evaporation examples. . . . . . . . . . . . . . 168

7.12 Demonstration of trap position control with current ratio and phase

difference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

7.13 Trap frequency and lifetime data at a lower resonance . . . . . . . . . 171

8.1 Cover image from AJP, featuring our work . . . . . . . . . . . . . . . 175

8.2 3D model, and comparison of simulation methods . . . . . . . . . . . 178

8.3 Pedagogical explanation of the AC skin effect . . . . . . . . . . . . . 183

8.4 Schematic and photos of the experimental setup . . . . . . . . . . . . 187

8.5 Theory comparison of magnetic field and current density . . . . . . . 191

8.6 Magnetic field data comparison at low and high frequency . . . . . . 193

8.7 Lateral AC skin data at all measured frequencies . . . . . . . . . . . 195

8.8 Phase measurements vs. position at 5 kHz . . . . . . . . . . . . . . . 197

8.9 Sequential values of the coefficients Cn . . . . . . . . . . . . . . . . . 199

8.10 Phase distributions for all frequencies . . . . . . . . . . . . . . . . . . 201

B.1 Microwave lattice demonstration . . . . . . . . . . . . . . . . . . . . . 218

C.1 Rabi map explanation . . . . . . . . . . . . . . . . . . . . . . . . . . 221

C.2 Rabi map initial population . . . . . . . . . . . . . . . . . . . . . . . 222

C.3 Rabi map for 2 µs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

C.4 Rabi map for 4 µs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

C.5 Rabi map for 6 µs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

C.6 Rabi map for 8 µs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

C.7 Rabi map for 10 µs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

C.8 Rabi map for 12 µs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

C.9 Rabi map for 14 µs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

C.10 Rabi map for 16 µs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

xii



C.11 Rabi map for 18 µs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

C.12 Rabi map for 20 µs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

C.13 Rabi map for 22 µs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

C.14 Rabi map for 24 µs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

C.15 Rabi map for 26 µs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

C.16 Rabi map for 28 µs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

C.17 Rabi map for 30 µs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

xiii



CHAPTER 1

Introduction

This work presents the first demonstration of an AC Zeeman trap on an atom

chip. In the subsequent chapters, we examine the theory, simulations, and many

empirical findings surrounding this novel trap. In this chapter, I discuss the var-

ious qualitative features of the AC Zeeman effect, situating this discovery within

modern atomic research, and indicating its usefulness for experiments enabled or

fundamentally transformed by the addition of this AC Zeeman tool.

1.1 Foundation

Many modern experiments utilize atoms and ions as standard, sensitive instru-

ments capable of remarkable precision, measuring fundamental constants [1, 2, 3, 4,

5], gravity [6, 7, 8, 9, 10, 11, 12, 13], rotation [14, 15, 16], and acceleration [17] via

atom interferometry, or acting as quantum information bits [18, 19, 20, 21, 22]. A

typical modern platform uses a dilute gas of alkali atoms at ultracold temperatures

inside a vacuum chamber [23, 24, 25, 26, 27], where propagating lasers along with

direct currents (DC) and alternating current (AC) generating magnetic fields exert

control on the atoms from an external ‘shirtsleeve’ environment. Atom tempera-

1



tures are roughly 1 µK above absolute zero (or lower), and atoms can be brought

to Bose-Einstein Condensation (BEC) [28, 29, 30, 31] for interesting matter-wave

or atom laser experiments. Our apparatus contains an ‘atom chip’ as the primary

test platform [32, 33, 34, 35, 36], which is very simply a handful of parallel current-

carrying conductors 50 µm wide on an insulating substrate, affixed to the top of the

vacuum chamber, facing down. A cartoon schematic of our setup is in Fig. 1.1. An

atom chip’s primary role is generating steep gradients of magnetic field near the chip

using controlled AC and DC currents. Close spacing of multiple chip wires allows

field control with precision on the 1− 10 µm scale, roughly the size of chip features

and smaller. In general, one should minimize the Size, Weight and Power (SWaP)

of an apparatus, and the atom chip’s small size is a great benefit.

A typical atom chip micro-magnetic trap uses a local minimum of DC Zeeman

energy to trap atoms in weak-field-seeking ground hyperfine electronic states. The

magnetic near field from a single DC chip current is negated by an oppositely-

oriented field between a pair of nearly Helmholtz electromagnetic coils. This DC

field zero occurs in one location, and a restoring force from the DC Zeeman energy

potential around this area can contain atoms in a magnetic ‘bottle,’ if it’s stronger

than gravity [37]. By controlling current in the chip trace and coil pairs along three

axes, we can shift the position, depth, or curvature of this chip-based DC Zeeman

trap, and this is a standard modern technique.

1.2 AC Zeeman Overview

The AC Zeeman effect [38, 39, 40, 41, 42, 43, 44] is an atom-photon effect

using the oscillating magnetic field near chip wires carrying radiofrequency (RF)

and microwave (µw) currents, with frequencies near-resonant to hyperfine atomic

transitions. Atoms in select spin states have their energy shifted by the applied
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FIG. 1.1: Atom chip and basic experimental layout. Top: A cartoon of the experiment,
looking up at the atom chip. Fields produced by alternating currents in chip wires
generate non-uniform circular polarization components B+ and B− fields simultaneously,
trapping low-field seeking AC Zeeman states. Other experimental features are described
in detail later. Middle: An image of the atom chip, viewed from the opposite direction
as the cartoon. Bottom: Diagram of chip, illustrating connected traces by color.
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alternating magnetic field polarization, power, and frequency. Utilizing the high

1
r

magnetic gradients when atoms are a short distance r from chip wires, we can

exert a significant spin-specific force on atoms, and can trap targeted spin states, as

demonstrated in this thesis.

Summarizing some key AC Zeeman characteristics at a glance:

• Spin-specific: We can target spin states with µw or whole hyperfine manifolds

with RF, depending on polarization (σ+, σ−, π) and resonance of the applied

frequency.

• Bipolar: In the two-level system, we can generate high- or low-field-seeking

states from the same atomic states.

• Resonant: AC Zeeman energy has its maximum on resonance and decreases with

higher detuning δ, allowing us to tune trap behavior with applied frequency.

• Any spin state can be targeted and trapped in the microwave case, and any

mF 6= 0 in the RF case. This feature could allow experiments and Bose-Einstein

condensation (BEC) in typically un-trappable states.

• Any background DC field can be used, as it only adjusts the atomic res-

onance frequency. This flexibility is particularly useful for Feshbach resonance

measurements and using magnetic noise insensitive “magic” BDC values.

• Simultaneous spin-specific traps: In some trapping schemes, multiple useful

traps are generated simultaneously, using different near-field polarizations. Ad-

ditionally, multiple frequencies can generate independent traps using the same

wires that target different spin states. Either of these methods can be a basis for

a spin-dependent matter wave interferometer.
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• Phase as a trapping parameter: Using two (or more) AC signals at the

same frequency introduces their differential phase as a tunable, useful parameter,

controlling trap position.

• No spontaneous emission: Because the hyperfine splittings are small com-

pared to optical transitions, the spontaneous decay rate (Γ ∝ ω3) renders states

nearly immune to spontaneous emissions, and transitions receive narrow linewidths

as a result.

• Insensitive to surface roughness: The polarization selection helps atoms

ignore imperfections in current flow, lowering roughness effects by over an order

of magnitude, per our simulations [45].

• Small Features: Even though RF wavelengths are tens of meters, we observe

µm-level features on the scale of the atom chip’s wire width and spacing.

Many experiments already employ RF in atom chip traces as an evaporation

‘knife,’ enabling AC Zeeman force on current machines for a ‘software’ change.

Indeed, ion traps have already demonstrated single wire AC Zeeman as a spin-

dependent force to probe individual ions. With some ‘hardware’ phase control on

multiple lines, we can trap atoms with the AC Zeeman energy, offering a transfor-

mative technology for a rather modest addition.

1.3 Toward Atom Interferometry

One motivation for spin-dependent trapping is the prospect for its use in matter-

wave or atom interferometry (AI) [46, 34, 47, 48, 49, 50]. In general terms, an atom

interferometer measures very precisely the energy differences between two states

in a superposition. These two states represent the ‘arms’ of an interferometer,
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which can be spatially separated to measure a local gradient in energy, and become

atomic ‘clocks’ without this separating step. Conceptually, the method is similar

to a Michelson interferometer for light. Here, quantum spin operations replace the

beamsplitter and mirrors, but we have a single populated input arm (|↑〉) and the

output exhibits fringes as the relative arm ‘length’ changes. An atom interferometer

is ‘read out’ by examining the ratio of atom populations in each arm state, a value

that oscillates as a function of the accumulated phase difference in the arms:

φ↑ − φ↓ = (ω↑ − ω↓)∆t = (E↑ − E↓)∆t/~ = ∆E∆t/~

depending on population numbers N↑, N↓, using arbitrary spin up |↑〉 and spin down

|↓〉 states in this toy model. A proper calculation includes the integration of energy

difference over time, and must account for many small additional energy shifts than

the one targeted. One benefit of using trapped atoms for interferometry is the

ability to take a single measurement for an integration time ∆t approaching the trap

lifetime, rather than obeying ballistic or spontaneous emission time constraints.

We show a cartoon of three atom interferometer schemes in Fig. 1.2. In one

scheme, a spin-agnostic trap maintains the primary trapping of atoms, and a spin-

dependent force shifts one state in position. In the second scheme, a fully spin-

dependent trap holds each of the arms, moving independently of each other. In

the third, we add a longitudinal lattice formed by counter-inserted microwaves,

which can shift atoms axially, allowing them to enclose an area to form a Sagnac

interferometer.

This spin-dependent trapping scheme allows for better measurements, as the

first spin-shifting method necessarily energy-shifts the two states and prevents iner-

tial measurements. In fact, we must be very careful to maintain trapping frequencies

in each arm, or else use noise cancellation methods like spin-echo, ‘mirroring’ the
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FIG. 1.2: Cartoon diagrams of atom interferometry for a single shifted state (top),
a fully spin-trapping scheme (middle), and a Sagnac arrangement (bottom). Atoms
are made into an two-state superposition by a π/2 pulse. Each spin state arm then
accumulates phase (φ↑ and φ↓) due to E/~ over a time t. Another π/2 pulse recombines
atoms, before spin-separating the populations in each state for read-out. In the Sagnac
case, the longitudinal microwave lattice helps enclose an area for measurement.
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states with a π-pulse, or other methods [51, 52, 53]. In addition, background energy

noise is troublesome, so one can operate at ‘magic’ magnetic-insensitive frequencies,

spin-squeeze the sample, or attempt other methods for noise reduction in the quan-

tum system [54, 55]. While low temperatures typically benefit signal contrast, we

elect to study thermal atoms, simulating a degenerate Fermion gas [56, 57]. While

interpretation is easier for a single wave in a Bose-Einstein condensate (BEC), a

thermal cloud acts as a ‘white-light’ or multi-mode interferometer, where each ther-

mal energy level receives a ‘single-atom’ effect and participates in the full population

readout at the end.

Some geometries of AC Zeeman traps (to be described in detail later) create co-

located traps for different spin states, which themselves move oppositely from each

other as the phase of the generating currents are adjusted. This geometry is a strong

candidate for a transformative type of atom interferometer using a single frequency,

although using multiple frequencies can also produce overlapping independent spin

traps. Atoms generated so near to the surface of the atom chip are begging to

measure near-surface gradients such as the Casimir-Polder force, probing gravity, or

black body radiation using trapped atoms with test bodies < 1 mm away behind the

atom chip. One can imagine extra separation of interferometer arms by ‘passing’

an AC Zeeman trap across successive parallel wires, using a standing wave to move

along the wires, and even combining the two techniques to enclose an area, creating

a Sagnac interferometer. The whole arrangement can flip so that gravity points

toward the chip, sideways, or in micro-gravity, where each case would increase trap

depth for the same inserted power [58].
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1.4 Other Applications

When generating a local minimum in AC Zeeman potential that we call a

‘trap,’ we simultaneously find a saddle point region that is broadly flat below the

trap and a linear region as the point of inflection between these two curvatures.

One can imagine utilizing the saddle-point to give atoms a microwave π/2 pulse

that is consistent over the size of the atom cloud, as opposed to a single-wire pulse

imprinting its vertical power gradient over the cloud. One can apply a known linear

gradient over an otherwise trapped cloud to shift the position or evaporate only one

spin state of a trapped mixture.

In addition to slotting into other experiments as a spin-specific potential and

using multiple traps simultaneously for atom interferometry, an AC Zeeman trap

on its own can enable exciting physics. For one example, the AC Zeeman trap

demonstrated is an elongated cigar shape, which forms a pseudo-1D potential for

many-body systems. This trap’s profile can be adjusted from a linear cusp to a

smooth harmonic bottom by varying RF frequency. Additionally, we have seen

in simulations some more exotic trap shapes like a donut-shaped bottom (like the

well of a ‘sombrero’) and a square-pyramidal linear trap bottom, given a diagonal

quantizing field.

The method of generating polarization minima with phase control in multi-

ple wires can be applied broadly on atom chips, Paul traps, atomic beam steering,

perhaps macroscopic magnetic dipole control, and other applications where the po-

larization of field and resonance play an essential role. Even as spin-specific AC

Zeeman forces today are applied to trapped ions, I believe the demonstration of

an AC Zeeman trap for a small investment can have a transformative effect as a

spin-targeting tool in many other experiments.
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1.5 Layout

We begin with discussing the apparatus as our foundation in Chap. 2, then a

recap of the relevant quantum mechanics and dressed atom theory in Chap. 3. In

Chap. 4, we discuss the fitting of Rabi frequencies and gradients, crucial measure-

ments in the later chapters, but not interesting enough to discuss in detail there.

Then in Chap. 5, we present RF AC Zeeman force measurements, which might have

been the center of this thesis if trapping was not successful. Chapter 6 contains

trap pedagogy, simulations and analyzes the arbitrary position of AC Zeeman traps

for two- and three-microstrip geometries in a toy model. The heart of this thesis

is Chap. 7, where we demonstrate AC Zeeman trapping on an atom chip, giving

empirical data and describing a few demonstrations (evaporation and a ‘throw and

catch’ technique) with AC Zeeman traps. We follow with a study of the AC skin

effect in lateral wires in Chap. 8 and give a summation and outlook on the future

of this project in Chap. 9. The appendices include some explicit five-level dressed

state math in Appx. A, a brief demonstration of a microwave lattice in Appx. B,

and Rabi maps in Appx. C.

Parts of this dissertation resemble manuscripts either intended for publication

as (Chaps. 5 and 7), or actually published (Chap. 8). These may contain some

redundant or altered descriptions and figures with other chapters (3, 4 and 6).

There is a lot of cross-referencing in this thesis, so double-check the page number

before following a link to a different section.

1.6 Supplements

Some useful code from this project will likely be available as a .zip file Seth

Aubin’s website alongside this .pdf, as well as on GitHub (as of 2021) at:
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https://https://github.com/drewrotunno/ThesisCode
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CHAPTER 2

The Apparatus

Our ultracold atom apparatus sits in a windowless basement lab in Small Hall.

We use two 10’×5’ optics tables: the “laser table” for preparation of lasers for

potassium and rubidium that connect via optical fibers to the “science table,” which

houses the vacuum chamber and much more hardware comprising ‘the apparatus.”

A view of the vacuum chamber with a schematic super-imposed is shown in Fig. 2.1.

The ins and outs of this device are scattered through previous Ph.D. [59, 60, 61, 62]

and undergraduate theses. Therefore, I will give only an overview of the appa-

ratus in Sec. 2.1, a typical experimental cycle in Sec. 2.2, and focus on several

new instruments, devices, and techniques that have become permanent fixtures to

the apparatus in the rest of this chapter. These include modifications of the optical

dipole trap in Sec. 2.3, thermal expansion mitigation in Sec. 2.4, sweeping frequency

sources in Secs. 2.5 and 2.6, a modular RF amplifier in Sec. 2.7, and moving the RF

evaporation signal in Sec. 2.8. We present some useful measurements of the chip

traces in Sec. 2.9, and summarize in 2.10.
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FIG. 2.1: The Apparatus on the science table with a super-imposed schematic showing
coils, laser paths, and vacuum structures. Image credit: A.J. Pyle, 3-D model by Austin
Ziltz.
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2.1 General Description

The vacuum chamber in Fig. 2.1 consists primarily of two elongated square

glass vacuum cells, affixed in an upright L-shape by standard steel vacuum parts.

An “atom chip” is inserted from above, suspended in the center of the vertical cell,

with its active side pointed down. Both the side MOT cell and the upper science cell

are surrounded by wire-coil electromagnets generating nominally Cartesian-oriented

magnetic field components with Helmholtz-like pairs and unpaired coils, along with

anti-Helmholtz pairs which form the transport traps and the ‘B-trap.’ Optical access

for cameras comes from two directions at the atom chip, ‘radial’ and ‘axial’ views

of a cigar-shaped cold atom cloud held beneath the chip surface. The whole system

runs on a sequencer, the Adwin, which alters analog and digital control channels

on 10 µs time steps (100 kHz), interfacing all of the hardware for the experiment

from software graphical user interface (GUI) ‘panels.’

2.2 A Typical Cycle

This section outlines a typical 30 second apparatus cycle, along with Table 2.1.

2.2.1 Magneto-Optical Trap (MOT)

Atom collection begins in a Magneto-Optical Trap in the lower ‘MOT’ cell,

where three counter-propagating laser pairs bathe atoms with photons near-resonant

to the D2 electric dipole transition 5S 1
2
→ 5P 3

2
at 780 nm, as drawn in Fig. 2.2.

This light Doppler cools gaseous rubidium atoms via the cycling transition:

|5S 1
2
, ` = 0, F = 2,mF = −2〉 ↔ |5P 3

2
, ` = 1, F = 3,mF = −3〉
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Description Duration (s) Temperature (µK) Number

MOT collection 15 100 5× 108

Cooling, Optical pumping < 0.1 16 5× 108

Magnetic transport 7 60 3× 108

Into Chip Trap 1 90 2.5× 106

Evaporation 4 1-2 3× 105

(Optional) to BEC 0.2 0.4 3× 104

Into ACZ / Dipole 0.05 / 0.5 1-2 3× 105

Experiment 0.001 - 2 ” ”

Imaging 0.5 ” ”

Total ≈ 30

TABLE 2.1: Timing sequence of a typical experimental cycle. Experimental values
adapted from C. Fancher’s thesis.

where N = 5 is the principle quantum number, {S, P} correspond to the orbital

angular momentum ` = {0, 1} and total angular momentum F = I + ` + S com-

bines nuclear, orbital, and electron spin respectively, with ẑ-projection mF . We

use two laser frequencies, the ‘trap’ and ‘repump,’ offset by nearly the ground-state

hyperfine transition of 6.8 GHz. Trap light is applied with detuning δ held slightly

negative or red of the transition. ‘Fast’ or ‘hot’ atoms see this light blue-shifted

back to resonance and absorb the opposing photon momentum. Additionally, an

inhomogeneous local minimum in magnetic field creates a spatial detuning varia-

tion, such that atoms in the outer regions of the trap absorb a photon to move them

inward, and atoms at the trap center remain ‘dark’ as they don’t absorb much light

by this resonant process. The spontaneous decay rate of Γ = 2π × 6 MHz on this

transition leaves atoms as cold as the Doppler limit TD = ~Γ/2kB, roughly 144 µK.

Repump light takes atoms that might fall ‘dark’ in 5S 1
2
, F = 1 back into the cycling

transition.

The slowed atoms congregate at the B-field zero at the center of an anti-

Helmholtz coil pair, for up to 15 seconds of collection time.
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FIG. 2.2: Diagram of the 5P 3
2

and 5S 1
2

hyperfine levels and the relevant transitions for

optical cooling (red, ‘Trap’) and repumping (blue, ‘Repump’) in rubidium-87 [63].

2.2.2 Optical Molasses and Pumping

After the collection period, atoms are slowed or cooled further using a the

optical molasses technique. Briefly, by using light polarization ‘lattices,’ atoms with

kinetic energy move ‘uphill’ against a gradient, before optically pumping to another

state which then traverses another ‘hill’ of a polarization gradient. Colloquially,

this is called ‘Sisyphus’ cooling, as atoms continue to lose kinetic energy pushing

themselves ‘uphill.’ This quick process leaves the atom ensemble temperature well

below the Doppler limit.

Atoms are then optically pumped using a vertically aligned B-field and a

circularly-polarized beam into a single state population. We use both trap and

repump light near resonance to optically ‘pump’ the atom population into the

|5P 3
2
, F = 3,mF = 3〉 state, which quickly decays to a nearly pure |5S 1

2
, F = 2,mF = 2〉

state.
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Trappable states have gyromagnetic factors gF and ẑ quantum numbers mF

such that gFmF > 0. Specifically, we intend to trap |F = 2,mF = 2〉, but get a few

percent of |F = 2,mF = 1〉 contamination as well.

2.2.3 Magnetic Transport

Atoms are then caught in the ‘B-trap’ generated by the purple anti-Helmholtz

coils in Fig. 2.1, as they turn on very quickly. By adjusting 100-Amp currents in

multiple stationary transport coils (orange in Fig. 2.1), the field minimum moves

smoothly over and up to the chip.

2.2.4 Atom Chip

The chip micromagnetic trap uses a single Z-shaped wire carrying direct current

(DC) and a ‘hold’ field which cancels the Z’s magnetic field at one point below the

chip. The Z-wire has current in the −ẑ direction, and the holding field points in

−x̂. The result is a long cigar-shaped trap along the central z-wire segment. We can

control the trap’s shape and position by adjusting the generating fields, including a

vertical trim field and the quantizing BDC ẑ field aligned with the long axis of the

trap. We show an illustration of the atom chip with atoms held in a crossed dipole

trap in Fig. 2.3.

2.2.5 Radiofrequency Evaporation

We evaporate atoms in this magnetic trap as the final cooling process, using RF

photons to couple the surfaces shown in Fig. 2.4. These are simulated traps with

some typical experimental parameters. Evaporation sweeps from high (≈ 7 MHz)

to low (≈ 3 MHz) frequency will move atoms in the hottest, farthest regions of the

trap into anti-trapped states, where they are ejected. Atoms colder than the RF
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FIG. 2.3: A 3-D cartoon of the atom chip, not to scale. Illustrated in this image are the
axial and radial imaging directions, the quantizing BDC field direction, the atom chip
U-Z-U wires, the crossed optical dipole trap (ODT), and the Stern-Gerlach (S.G.) coil.
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‘knife’ frequency remain trapped, continually re-thermalizing with elastic collisions.

Atoms are prepared intentionally in a thermal atom cloud, above the critical

temperature for BEC formation, but only by a few (1-2) orders of magnitude in

phase-space density. Evaporation leaves roughly 200k-500k atoms at 1-2 µK as the

starting point for much of this work.

2.2.6 Experiment

The next item sequentially is the experiment that we want to perform after

preparation. Specifics of this step will be discussed at length in Chaps. 5 and 7. It

generally includes loading the atom chip trap into either the AC Zeeman trap, or

the ODT, and then a sequence of RF and microwave interactions performing the

experiment of interest.

2.2.7 DC Stern-Gerlach Separation

At the end of an experiment, when the atoms are released from a trap and are

in free-fall, but before imaging, we can elect to let them fall through a horizontal (x̂)

DC magnetic field gradient, which separates them by their mF projections using the

Stern-Gerlach effect. We use a single coil, noted in Figs. 2.3 and 2.5, to provide this

spatially-varying field for the atoms. The Stern-Gerlach force FSG = mFgFµB
dB
dx

(variables defined in Chap. 3) makes each mF 6= 0 state into a high- or low-field

seeker, who move left-and-right in x during the time-of-flight, based on the sign and

magnitude of mFgF . This Stern-Gerlach separation method is demonstrated in later

experiments, e.g. Fig. 5.8.
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FIG. 2.4: Simulated DC chip trap. Top: Simulated trapping and anti-trapping poten-
tials, using typical DC atom chip micro-magnetic trap parameters, shown for all 3+5
ground hyperfine levels. Bottom: Differences between trap potentials expressed in MHz,
illustrating how RF can connect curves for evaporation.
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2.2.8 Imaging

Imaging occurs as the final step of any experimental cycle to retrieve informa-

tion about atom position and population after our experimental procedure. Trap

light only images atoms in |5S 1
2
, F = 2,mF = +2〉 (with the cycling transition to

|5P 1
2
, F = 3,mF = +3〉), so we use a 1 ms long ‘pre-pulse’ containing trap and re-

pump light, employing the same polarized pumping scheme as before to turn all mF

states into +2.

Absorption imaging requires two images: One where atoms absorb trap light,

creating a shadow in the image, and one reference of laser light intensity, with-

out atoms, taken a half-second later. The optical density measures atomic col-

umn density via intensity I over the camera sensor, measured by optical depth

O.D. = − ln
(
Iatoms
Ilaser

)
. These measurements generate high contrast false color im-

ages where red hot spots of atoms rise above blue backgrounds.

We image along two perpendicular directions indicated in Fig. 2.12: the ‘radial’

view looks down the length of the cigar (ẑ), giving radial information, and the ‘axial’

view observes the long axis of the cigar (−x̂), from the side. Each camera images at

a 1:1 magnification, although they have different square pixel sizes: radial (Unibrain

Fire-i 530b) is coarser with 7.4 µm/px, and axial (Unibrain Fire-i701B) is finer with

4.65 µm/px.

Typically, we take a rectangular ‘region of interest’ (ROI), a range of pixels

that contain the whole round atom cloud, and some background area around it for

good fitting. Then, we sum the optical density values along one axis, projecting

the 2-D area into a 1-D optical density to fit in each direction. We can fit ballistic

atom clouds with a 1-D Gaussian function Ae−(x−x0σx
)
2

to resolve cloud center-of-

mass position x0, spatial size σx, and number A. Often in this thesis, only relative

atom populations matter, so we can use solely A to relate multiple clouds, if they
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have the same size σx, as in Rabi frequency measurements of Fig. 4.1. If fits are poor

due to odd cloud shape or low number, a ‘raw’ O.D. count over the ROI can suffice.

To get actual atom number for each pixel, as with population decay measurements,

we can use the expression [62]:

Npixel = − ln

(
Catoms
Claser

)
2π

3λ2
· Apixel

where Catoms, Claser are the CCD pixel counts, λ is the laser wavelength and Apixel

is the above listed pixel size squared. This imaging technique is destructive and

necessarily marks the end of an experimental run.

2.3 Optical Dipole Trap

We can perform experiments on atoms trapped in a focused laser beam located

roughly 100 µm below the chip, illustrated in Fig. 2.3. Transitioning to this trap was

initially motivated by avoiding eddy currents when the DC trap is quickly shut off, as

well as giving atoms a locally uniform BDC magnitude and direction. Additionally,

the electric dipole force traps all mF states, a useful benefit compared to the DC

trap. This optical dipole trap (ODT) is a 1064 nm laser beam pair (2 W total) that

confines atoms to the intensity maximum of two crossed focal points below the U

or Z wire. The power is split 80/20 into mostly the ‘main’ beam, which is focused

down to nominal 60 µm beam waist along the chip current ẑ direction, and less

in the ‘cross’ beam at nearly a right angle, that confines atoms in the main beam

axially in its focus, nominally 120 µm. We measure the main radial trap frequency

roughly 2π× 170 Hz, and ‘cross’ beam axial confinement roughly 2π× 20 Hz. Only

the second ‘cross’ beam oriented −x̂ is used in the AC Zeeman trap, again for axial

end-capping. We observe higher trap lifetimes in F = 2 for the mF = {+2,−2}
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stretch states ≈ {5.5, 7} seconds, and lower lifetimes in the middle mF = {−1, 0, 1}

states ≈ {0.2, 0.5, 0.2} seconds. This is likely due to inelastic spin-flipping collisions

available to the non-stretch states, and affects the measurements of spin populations

over time in Chap. 5.

In early 2020, we added a diagonal plate of glass on a rotation stage, translating

both beams vertically for automated trap translation. This device is labeled in

Fig. 2.5, and details are in Bennett Atwater’s thesis. The idea is that we can grab

a high number of atoms from the end of transport into this ODT, then translate

them up to the chip surface into an AC Zeeman trap, skipping the lossy DC micro-

magnetic trap hand-off. The ACZ Force was measured before this addition, and

the rotation stage was left in the top position for the entirety of the ACZ trap

experiment.

2.4 Thermal Stabilization Strategies

The ODT beam was initially free-run on the table, but small air currents and

thermal effects created significant movement in the trap location day-to-day. Charles

Fancher, before 2016, added a fiber that helped minimized this beam wander by

significantly lowering the free-travel path of the laser.

We have more recently observed movement in the ODT beams and thus atom

trap position under the chip, in tandem with room temperature fluctuations of

∼ 0.5◦ C. Providing the ODT beams at the atom chip height, we have two opti-

cal breadboards sized 18”×24”×2.5”, with tapped top and solid bottom surfaces

each 3 mm thick, and a 2 inch aluminum vertical honey-comb body sit on four

corner 18” stilts as shown partially in Fig. 2.5. We found that the top and bottom

faces would expand differentially, cupping the top plate, tilting the edge-mounted

periscope mirrors. This warping created a shifting ODT position which moved verti-
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Rotating 
Plate

S-G Coil

Periscope

Periscope

FIG. 2.5: A zoom of the platform near the atom chip, showing the new rotating
plate and the platform itself, plus the Stern-Gerlach (S-G) coil, which we use in later
measurements. Image credit: Bennett Atwater.
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cally with room temperature and reproduced well with warming the bottom surface

of the optics platform. This correlation is shown in Fig. 2.6, which shows atom

height, beam height, room temperature, and table temperature over a few hours of

observation. We observe sinusoidal fluctuations roughly 10µm/0.3◦ C, with a nearly

90 minute cycle, due to our HVAC system, which simply turns on and off within a

tight temperature interval.

The first attempt at a fix was to abate the largest heat sources near the appa-

ratus. The driving unit for the ODT laser has a circular tube duct, which carries

its excess heat away from the apparatus. Initially, this duct pointed to the room’s

temperature sensor, forcing colder than needed air into the space. We re-routed this

duct across the lab, into the ‘theory section.’ A second heat abatement strategy

was to add fans above the AOM/laser lock cabinet, which also dump hot air into

the other half of the lab, so that each half’s HVAC unit can share the thermal load

generated by the apparatus.

As a temporary fix, we wrapped a blanket around and above half the optics

table to prevent the room’s HVAC from exerting too much control over the space.

We affixed thick foam insulation under the platform and added thermal mass in

the form of water bottles and copper mass near and on top of the optics tables to

require more heat for thermal changes in the area. This brought the total position

excursion in half, from around 15 µm to 8 µm.

For a permanent fix, we used replacement optics boards made from solid tapped

aluminum, with six through-holes to mount onto the support columns, as well as

two additional central pedestals for increased support, per thermal simulation cal-

culations carried out by Seth Aubin. Installation and re-alignment of the ODT

beams with the rotation stage was done in early 2020 and is shown in Fig. 2.1. The

new tables still seem to have some minor variation of a few microns, possibly from

differential thermal expansion in height between the platforms and the chip-stack

25



-24

-22

-20

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

13:26 13:55 14:24 14:52 15:21 15:50 16:19 16:48

Po
sit

io
n 

(µ
m

)
Atoms height

22.8

22.9

23

23.1

23.2

23.3

23.4

23.5

13:26 13:55 14:24 14:52 15:21 15:50 16:19 16:48

Te
m

pe
ra

tu
re

 (°
C)

Air Temp

22.3

22.35

22.4

22.45

22.5

22.55

22.6

22.65

22.7

22.75

13:26 13:55 14:24 14:52 15:21 15:50 16:19 16:48

Te
m

pe
ra

tu
re

 (°
C)

Time

Top Table Temp

2

4

6

8

10

12

14

16

18

20

13:26 13:55 14:24 14:52 15:21 15:50 16:19 16:48

Po
sit

io
n 

(µ
m

)

Beam Height
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support structure. It is hard to tell whether the atoms and the chip stack are mov-

ing, if the camera’s table is moving, or if the ODT beam path is tilting. We get

a long-term stability of a few (< 5) µm in a 60 µm waist trap, nearly our pixel

resolution (4.65 µm axial and 7.4 µm radial).

2.5 Cinderella and Other RF Sweeping Sources

My first task in this lab was to fix and duplicate a direct digital synthesis (DDS)

frequency sweeping signal generator using an evaluation board for the AD9910 chip.

This device maintains a continuous phase as frequency sweeps, and is capable of

frequency step units of 109/232 ≈ 0.23 Hz. The DDS changes the output voltage

every 1 ns, and can alter frequency or phase parameters every 4 ns. In principle,

the output frequency ranges from 0-500 MHz, but the useful range with our other

RF components is more like 3-400 MHz. Controlling the DDS is an Arduino Due

microcontroller with an Ethernet shield, which provides an html website to receive

human commands, shown in Fig. 2.8. The Arduino sends translated sweep infor-

mation to the AD9910, with timing given by Adwin inputs. The initial DDS and

its code were created by Harrison Cantor-Cooke, with some modifications and a

new user interface by subsequent undergraduate contributors and me. Because its

primary role is sweeping, I gave my box the name Cinderella, making the original

the Step Mother, and we have since added Prince Charming and Glass Slipper to

the roster.

When Charles Fancher was working with microwave AC Zeeman [44], we used a

phase-lock-loop (PLL) frequency multiplier to convert the DDS’s 107 MHz ×64→

6.8 GHz, and I use the same source for the microwave sweeps in Chap. 7. My

first project in the lab was fixing and duplicating a direct digital syntesizer (DDS)

frequency source, which provided the sweeping 107 MHz signal via a web interface.
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Lots of care went into selecting filters and arranging components to reduce harmonic

noise, and phase noise, where the latter aspect was significantly improved using a

DDS compared to an analog source. Some signal processing extracted frequencies

from an oscilloscope trace, with some representative results shown in Fig. 2.7. Anal-

ysis showed that this PLL multiplying technique led to frequency ‘overshoot’ at the

end of sweeps in (c), proportional to the slope in (a). Additionally, there was some

slight residuals from a linear slope in (b), and we show the reference RF signal in

(d) used as the sweeping clock of the PLL system. This overshoot suggests that

direct synthesis via mixing with 6.8 GHz is desirable, perhaps with IQ modulation

or single-sideband mixing, rather than a feedback system.

Generating frequency ‘ramps’ or sweeps on the DDS requires just a few pa-

rameters: the frequency start and endpoints, the frequency step amount, and time

step rate. Human operators often only know the total sweep time and frequency

endpoints, giving the overall slope only, and we must select step sizes to fit. In cases

where the desired slope is roughly one freq step/time step, slope inaccuracy will

adjust timing away from the intended duration. We have to pick two integers above

one as step sizes, whose ratio approximates the desired slope, and I have come up

with a little algorithm to do this. We take slope as ∆f/∆t or its inverse ∆t/∆f ,

whichever is above 1, an improper fraction. We then invert the difference of slope

and its nearest integer, rounding and taking the absolute value of the result:

multiplier =

∣∣∣∣round

(
1

slope− round(slope)

)∣∣∣∣
then check to see if multiplier× slope is within acceptable error of an integer. In a

trivial case, when the real slope is nearly slope = n+ 1
q

for positive integers {n, q},
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FIG. 2.7: Analysis of multiplied DDS signal, derived from an oscilloscope signal. This
PLL frequency-multiplier method can make a rather linear slope as in (a) with minor
frequency residuals from a linear fit in (b). However, the abrupt stop at the RF endpoint
in (d) leads to an ‘overshoot’ in the multiplied signal in (c), as its feedback catches up.
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FIG. 2.8: Cinderella’s webpage interface, showing a sample experimental microwave
sequence (showing frequency divided by 64). A user defines desired frequency end points
and sweep times (middle table), and an algorithm determines time and frequency step
sizes which minimize total time offset (bottom table).

we can see multiplier = q. Multiplying, we have

slope ·multiplier = (n+
1

q
)q = qn+ 1

and the other integer multiplier = q as the new slope step sizes. While this quickly

converges for some cases, we repeat the process of multiplying in new multiplier’s

until acceptable error is achieved, or we reach the upper step size bounds. Some

considerations about step choice are given in the bottom table of Fig. 2.8, for human-

defined slopes in the top table. Only the last sweep required this algorithm, yielding

frequency ‘Wordstep’ = 9, and ‘Timestep’ = 26. The rest of the sweeps in this

example were best suited for minimized frequency step without much timing error,

shown in the last column of the bottom table.

30



FIG. 2.9: Cinderella’s output frequency spectrum shown as dBm versus frequency, close-
in on the left (100 Hz span), and broadband on the right (100 MHz span). Measured by
Anritsu MS2038C spectrum analyzer.

In our use, the phase-coherence of the signal is very important, which appears

as tight linewidth in the frequency spectrum. Cinderella’s output frequency spec-

trum is in Fig. 2.9, showing both the close-in phase noise of the carrier, as well as

additional frequency components seen in the broadband range, revealing harmonics

and other stray peaks which we seek to minimize. The outputs were initially used

as a variable clock for phase-locked loop (PLL) frequency multiplying, converting

a sweeping frequency near 107 MHz to the 6.8 GHz range. In our RF AC Zee-

man work in Chap. 7, we can directly synthesize the relevant frequencies (around

20 MHz), but this creates some unwanted harmonics nearby. We often elect to fre-

quency mix a very stable source at 100 MHz (or 6.8 GHz in future plans) to our

sweeping RF sources to create the relevant frequency as their sum or difference.

Mixing frequencies significantly lowers the 2nd harmonic, at the expense of higher

odd harmonics (3rd, 5th, . . .), which can be suppressed more by low-pass filters. Ad-

ditionally, we could lower phase noise by clocking the AD9910 directly using a good

external 1 GHz clock fed by a stable 10 MHz rather than letting the on-board PLL

of the DDS perform this multiplying itself.

While these DDS devices work great as single sources, we needed phase control

between sources for trapping. Unfortunately, an inconsistent time delay on the
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independent Arduinos prevents phase control between multiple sources. We could

have split one signal and phase delayed each part, but this approach generally causes

additional phase-shifts due to attenuation. Since we can control phase very precisely

(∆φ = 360◦/216) on generation, we should make or find a DDS that has phase control

on multiple lines with deterministic timing.

2.6 FlexDDS

We found a commercial replacement, the WieserLabs FlexDDS-NG, which uti-

lizes multiple AD9910 chips on the same clock in expandable slot pairs. This machine

has deterministic timing from internal FPGAs and an Ethernet port ready to re-

ceive teletype commands. I wrote an open-source suite of commands in MATLAB

which now replaces the individual DDS’s and their websites. This library is on my

GitHub:

https://github.com/drewrotunno/FlexDDS

A bespoke GUI shown in Fig. 2.10 operates well for single-frequency mode.

However, I generally found that I wanted a detailed view and explicit control over

each action and trigger in a script execution, instead of ‘under the hood’ in the code

of an easy-to-use GUI. In practice, I use the script version of the control program to

perform the experiments of Chap. 7. Generally, instructions for an apparatus cycle

are concatenated as a ‘stack,’ which is ‘flushed’ to the FlexDDS as one message per

slot.

We desire phase control on two lines at the same frequency, and we elect to do

that with a shared ‘rack’ TTL trigger on three signals: one frequency setting signal,

which acts as the shared Local Oscillator (LO) to the mixer at fRF + 100 MHz,

and two independent RF signals at 100 MHz with controlled differential phase. If

we trigger two frequency shifting signals at slightly different times, then one signal
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FIG. 2.10: Left: A graphical user interface (GUI) for the FlexDDS. Right: The GUI
enables control over the AD9910’s control function registers (CFR).

could phase-slip continuously with a slightly faster frequency, then un-shift at the

end of the frequency sweep as the other catches up. Having one signal sweep and

the others at constant frequency with tunable phase prevents this slipping and is

enabled explicitly by our mixer setup.

2.7 Fluffy, the Three-headed Amplifier

With the frequency source in hand, we now need much more power than it

produces to trap atoms. Simulations suggest 20 mW was the very low end of a

possible trap power, and as much as 2 W would be more than enough to create

near mK trap depth. We purchased some 10 W amplifiers, planning to use two for

this proof-of-principle project and three in future experiments. The device ‘Fluffy’

is named after Hagrid’s three-headed dog, who guards the path to the Sorcerer’s

Stone (or Philosopher’s Stone) in the first Harry Potter book.

This RF chain provides power control, frequency mixing, and signal monitoring

while minimizing the harmonic contribution to the final signal. Components are

tied down to an “RF breadboard” (i.e. a thin optics breadboard) and are easily

re-configurable, as shown in Fig. 2.11. Two additional alterations that lowered

overall harmonic representation are 1) the use of low-pass filters after the mixers
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and 2) attenuating the signal before the variable voltage attenuators (VVA), which

requires a compensating pre-amp afterward. We elect to attenuate before the mixers,

leveraging the non-linear response for further attenuation at low power.

If too much power is sent to the chip, it can break a chip trace in any number of

failure modes (e.g. melting a chip wire, having a trace separate from the substrate,

connecting to a different wire, etc.), all of which are rather difficult to observe from

the outside. To prevent such an irreversible failure, we have an integrated safety

feedback system that will mute the signal if measured RF power (plus DC) is too

high. Either of two triggers will mute the signal: 1) if the instantaneous power is

> 0.5 W or 2) the integrated power over time is > 1 W·s, with hand-set thresholds.

2.8 Evaporation Trace Switch

When testing higher power on atom chip wires for RF ACZ trapping (in Chap. 7),

we rendered the trace formerly used for RF evaporation unusable. We know that

this wire had a scratch across it from initial apparatus preparation, and this trace

might have also developed small conductive connections to nearby wires over time.

Applying 200 mW of RF power made the impedance of this trace jump randomly

between values as the signal was applied, rather than acting as a simple resistive

short as it had previously. This erratic behavior forced us to use the other U and Z

wires to trap with, as we go over in Sec. 6.7. The chip’s layout is shown Fig. 2.12,

with the Z-wire in blue, and the lower U-wire in red used for the previous microwave

experiment and ACZ trapping. We moved the evaporation signal from the top red

U-wire to the purple loop in Fig. 2.12, raising the baseline evaporation power by

+3 dB to achieve similar cooling as before the change.
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FIG. 2.11: A schematic and photos of Fluffy, the RF frequency (fRF) system. We use the
FlexDDS (top left photo) as a multichannel source, and Fluffy (top: schematic, bottom:
labeled photo) to mix and amplify those signals. Contents of the orange box are on each
mixer output, and each connects to different chip traces, as indicated. The ‘A’ line goes
to the U-wire, and the ‘B’ line goes to the Z-wire.
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FIG. 2.12: Atom chip layout. Full schematic (top left) with a zoom-in (top right) and
an image (bottom) of the chip traces. The evaporation line was moved from the left red
U-wire to the purple loop. Bottom: An image of the actual atom chip, showing feed
wires and the chip traces.

36



0 2 4 6 8 10 12 14 16 18 20

Frequency (GHz)

-30

-25

-20

-15

-10

-5

0

P
ow

er
 R

ef
le

ct
ed

 (
S

11
, d

B
)

Evap
Z
U

6.65 6.7 6.75 6.8 6.85 6.9 6.95 7 7.05 7.1

Frequency (GHz)

-25

-20

-15

-10

-5

0

P
ow

er
 R

ef
le

ct
ed

 (
S

11
, d

B
)

Evap
Z
U

FIG. 2.13: Vector network analyzer (VNA) Bode plots of chip trace power reflection
in dB vs. MHz frequency for the three center U(Evap)-Z-U wires. We show broadband
0-20 GHz data (top) and a zoom-in of the hyperfine splitting 6.8 GHz (bottom).

2.9 Chip VNA Measurements

A vector network analyzer (VNA, Anritsu MS2038C) is an impedance measure-

ment tool often used in antenna testing. It sends and receives broadband (< 20 GHz)

signals to a test platform, measuring return power and phase as a function of ap-

plied frequency, as shown for a broad range in Fig. 2.13 and for RF frequencies in

Fig. 2.14. Measuring chip wire impedance lets us know how much inserted power

is usefully applied as well as the relative phase-shifting between lines at different
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FIG. 2.14: Measurements of frequency-dependent chip behavior. Bottom: Vector net-
work analyzer (VNA) measurements of chip trace impedance Z (and related values as
labeled) on the two trapping wires and their difference across 1-51 MHz. The U-wire
is relatively flat across this range, but the Z wire shows frequency dependence in power
transfer and injection phase delay. This measurement motivated moving from ≈ 8.5 MHz
to 20 MHz for trapping.

frequencies. Figure 2.13 shows a broadband measurement of all three wires, zoomed

in on the hyperfine resonance and gives more detailed values for the two AC Zeeman

trapping wires.

We note that the phase measurement in Fig. 2.14 shows roughly 0.5◦/MHz

slope. We will find later this frequency-dependent phase shift causes a slightly tighter

trap at higher frequencies and looser traps at lower frequencies. The measured phase

shift does not entirely account for the trap resonance asymmetry around both 20

MHz and 8.5 MHz, as described in Chap. 7.

2.10 Summary

The present apparatus [81] contains many different components: lasers, electro-

magnetic coils, a vacuum system, waveform generators and so on, all of which play
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a role in the eventual goal of cooling a sample of rubidium (or potassium) atoms to

quantum degeneracy. While this apparatus was largely built by the time I arrived,

using techniques that are common practice in modern atomic physics, I have helped

maintain and modify the apparatus to our evolving needs.

We have discussed standard operation of the apparatus, as well as the RF

system required for this experiment, primarily comprised of lab-built DDS’s, Fluffy

and the FlexDDS. Additionally, some long-term difficulties are analyzed, including

thermal fluctuations in the lab and the atom chip’s ability to receive broadband

frequencies.
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CHAPTER 3

Dressed Atom Theory

This chapter goes through some atomic background for the AC Zeeman effect.

A good amount of the theory for this work is shared with that of so-called adiabatic

traps, which use homogeneous microwave fields to generate resonant shell-shaped

traps from a local inhomogeneous DC minimum [64, 65, 66]. Our case uses inho-

mogeneous RF field strength generated by AC currents in atom chip traces, with a

single homogeneous quantizing BDC ẑ field.

In Sec. 3.1, we decompose the hyperfine basis states |F,mF 〉. In Sec. 3.2, we

discuss some of the spin transitions between these levels, including some numerical

values for Clebsch-Gordan coefficients. In Sec. 3.3, we give some two-level driven

atomic theory, which generates the AC Zeeman energy and ACZ forces in Sec. 3.4.

Lastly, in Sec. 3.5, we tie these elements together to calculate the AC Zeeman energy

across a range of photon frequencies for the RF transitions in both hyperfine ground

state manifolds.
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3.1 Hyperfine Basis

Often, optical transitions are used in atomic experiments, utilizing electric

dipole transitions to higher electron energy levels for experimental control [46]. We

use optical transitions to one of the fine-structure states 5P
1
2 or 5P

3
2 in atom prepa-

ration and imaging. The central experiment of this thesis instead uses the radio

frequency and microwave magnetic transitions among the ground hyperfine states,

remaining in the spherical quantum state 5S
1
2 , where ` = 0. This ground state

combines nuclear spin I, electronic spin S as the total spin F± = I ± S = 3
2
± 1

2
,

yielding levels F+ = 2 and F− = 1 with a hyperfine splitting given by

ĤHFS = AHFSI · S (3.1)

whereAHFS is the magnetic dipole constant determined by experiment to beAHFS =

h · 3.417 GHz for 87Rb [63]. We can find I · S using

F 2 = (I + S)2 = I2 + S2 + 2I · S (3.2)

then rearranging and taking F 2 = ~2F (F + 1) and likewise for all spins, we arrive

at

I · S =
~2

2
(F (F + 1)− I(I + 1)− S(S + 1)) (3.3)

With F=2 or 1, this equation gives values of +3
4

and −5
4

relative to an unperturbed

5S level, yielding a total separation of 2AHFS = 6.834 GHz between the F manifolds.

This value largely comprises the ‘microwave’ transition frequency.

Each F± manifold contains 2F + 1 states, that is, five in F+ = 2 and three

in F− = 1, with ẑ-projection mF states spanning the integers from −F to +F .

Properly, each |F±,mF 〉 state is a mix of mS and mI which sum to mF , given for
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F+:

|F+ = I + S,mF 〉 =√
F+ +mF

2I + 1
|mI = mF −

1

2
,mS = +

1

2
〉+

√
F+ −mF

2I + 1
|mI = mF +

1

2
,mS = −1

2
〉

(3.4)

and for F−:

|F− = I − S,mF 〉 =

−
√
F+ −mF

2I + 1
|mI = mF −

1

2
,mS = +

1

2
〉+
√
F+ +mF

2I + 1
|mI = mF +

1

2
,mS = −1

2
〉

(3.5)

Notably, the stretch states |F = 2,mF = ±2〉 contain only one term with both spins

co-aligned either up or down, while each |mF | < 2 state retain two possible sums.

There are non-zero elements which combine between F+ and F− (Eqs. 3.4 and 3.5),

which adjust these states away from the |F±,mF 〉 basis, but |F = 2,±2〉 remain

exact. These DC Zeeman / Paschen-Back energy curves are plotted in Fig. 3.1.

Consider the Zeeman energyH = −~µ· ~B, where we fixBDC along the ẑ direction,

so spin operators Fz, Sz, Iz yield good quantum numbers mF ,mS,mI . We can break

~µ into the Bohr magneton µB = h·1.3996 MHz/G, and weights given by gyromagnetc

ratios gS = 2.002319, gI = −0.000995, gF+ = 0.501329, gF− = −0.499338 [63] and

ẑ-quantum numbers:

H = −~µ· ~B =
µBgFFzBz

~
= µBgFmFBz =

µB(gSSz + gIIz)Bz

~
= µB(gSms+gImI)Bz

(3.6)

where the mF case gives a good approximation in the low-BDC limit, and the S and

I components contribute to the exact value, but S significantly more, as |gS/gI | � 1.
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FIG. 3.1: Energies of the hyperfine ground states of 87 in a diagram (left) and as a
function of applied BDC (right). Energies are separated by 6.834 GHz by the hyperfine
splitting. At low field, mF are good quantum numbers, while at high field, sets of four
mI are seen for both mS signs.

Because there exist off-diagonal elements 〈F = 2,mF |F = 1,mF 〉 for mF = −1, 0, 1,

these have energy adjustments when diagonalizing HHFS +H across a range of BDC

magnitude, as shown in Fig. 3.1. We call plots like this “Breit-Rabi plots” after a

well-known exact solution with ` = 0 [67]. However, we diagonalize numerically for

later experiments in this work, as this approach gives both the |mF 〉 eigenvectors

and energies.

With a grip on the proper hyperfine basis states, we will continue to refer to

the F± manifolds, with mF states as good labels at low field, although we calculate

AC Zeeman energies using the diagonalized |I,mI , S,mS〉. In fact, we get all of the

results from the AC Zeeman force experiment using the low-BDC approximations

and use proper eigenvectors with higher-BDC in the trap experiment.

3.2 Transition Elements

Now we turn to the formalism that describes transitions between hyperfine

states, illustrated in Fig. 3.1. We examine only single-photon transitions, where the
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single unit of photon angular momentum relative to atomic quantization direction

and frequency determines possible transitions. Polarizations include π, in which

the magnetic driving field BAC aligned with ẑ and produces no mF change but

changes the F level. The σ± transitions do alter mF by ±1, and can flip F between

manifolds. This work focuses on the intra-manifold transitions at radio frequencies

(0.7 MHz/Gauss), whereas inter-manifold transitions are at microwave frequencies

(≈6.834 GHz for 87Rb). These σ± transitions occur only between adjacent mF

states, and by the sign of gF (matching F±), we see that only σ+ transitions occur

in F+ = 2, and only σ− transitions occur in F− = 1. Inspecting the level structure

of Fig. 3.1, we see that when RF photon energy is added, transitions in F+ = 2 alter

by ∆mF = +1 and transitions in F− = 1 alter by ∆mF = −1. We will see later

that this polarization dependence is crucial in tailoring AC Zeeman traps, and we

will formalize the theory for now.

We turn back to H = −~µ · ~B, which enabled us to find the DC Zeeman levels

using self- and inter-manifold Fz terms. We look at transitions that could generate

an AC Zeeman energy shift, induced by an alternating ~BAC field and spin ladder

operators contained in ~µ. Magnetic vectors ~BAC (or components) that rotate with

the DC Zeeman gyroscopes give their spins an extra ‘torque’ that does not time-

average away [68]. The original name for this effect was the transverse Stern-Gerlach

[38, 69], given that gradients in this rotating magnetic interaction give a spin-specific

force.

We will avoid ambiguity for F± as circular ladder operator, by using only its

components, defining S± = Sx±iSy and I± = Ix±iIy, keeping F± shorthand for 2 or

1. We can see quickly that we will have non-zero transition elements just off-diagonal

for 〈m|σ± |m∓ 1〉. Using ~µ = µB
~ (gS ~S+ gI~I), Sx = (S+ +S−)/2, Sy = (S+−S−)/2i

44



(and the same for B) we have:

H = −~µ · ~B =
µB
~

[gS ~S + gI~I] · ~B (3.7)

=
µB
~

[gS(SxBx + SyBy + SzBz) + gI(IxBx + IyBy + IzBz)] (3.8)

=
µB
~

[
gS

(
S+B−

2
+
S−B+

2
+ SzBRF,z

)
+ gI

(
I+B−

2
+
I−B+

2
+ IzBRF,z

)]
(3.9)

where again, the S terms dominate I at leading order such that one can use ~µ =

−2µB
~

~S for 2-3 digits of accuracy.

Equation 3.9 illustrates the polarization selection of transition elements, and

we should examine them further. As we can see from Fig. 3.1, the signs of gF give

a particular ladder structure to each F± level, where going up in energy raises

mF by one unit in F+, but removes mF going up in energy in F−. Formally,

we see transition elements that look like 〈F+,m
′
F |S+ |F+,mF 〉 having a non-zero

value, but 〈F+,m
′
F |S− |F+,mF 〉 = 0 and similarly 〈F−,m′F |S− |F−,mF 〉 6= 0 with

〈F−,m′F |S+ |F−,mF 〉 = 0. As such, we can see that for the RF transitions within

manifolds, they respect a single polarization (σ±), which feels only the opposite B∓

field.

Fortunately, the spin ladder operators S± have a simple reduction for the spin-1
2

system S:

S± |S,mS〉 = ~
√

(S ∓mS)(S ±mS + 1) |S,mS ± 1〉 (3.10)

S± |S,mS〉 = ~
√

(1
2

+ 1
2
)(1

2
− 1

2
+ 1) |S,mS ± 1〉 (3.11)

S± |S,mS〉 = ~ |S,mS ± 1〉 (3.12)

yielding just one unit of ~. With nuclear spin, the values depend on the value of I
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and mI generally:

I± |I,mI〉 = ~
√

(I ∓mI)(I ±mI + 1) |I,mI ± 1〉 (3.13)

I± |I,mI〉 = ~
√

(3
2
∓mI)(

3
2
±mI + 1) |I,mI ± 1〉 (3.14)

yielding specifically for I = 3
2

the values:

I− |I,mI =
3

2
〉 = ~

√
(3

2
+ 3

2
)(3

2
− 3

2
+ 1) |I,mI = 1

2
〉 =

√
3~ |I,mI =

1

2
〉 (3.15)

I− |I,mI =
1

2
〉 = ~

√
(3

2
+ 1

2
)(3

2
− 1

2
+ 1) |I,mI = −1

2
〉 = 2~ |I,mI = −1

2
〉 (3.16)

I− |I,mI = −1

2
〉 = ~

√
(3

2
− 1

2
)(3

2
+ 1

2
+ 1) |I,mI = −3

2
〉 =

√
3~ |I,mI = −3

2
〉 (3.17)

I+ |I,mI =
1

2
〉 = ~

√
(3

2
− 1

2
)(3

2
+ 1

2
+ 1) |I,mI = 3

2
〉 =

√
3~ |I,mI =

3

2
〉 (3.18)

I+ |I,mI = −1

2
〉 = ~

√
(3

2
+ 1

2
)(3

2
− 1

2
+ 1) |I,mI = 1

2
〉 = 2~ |I,mI =

1

2
〉 (3.19)

I+ |I,mI = −3

2
〉 = ~

√
(3

2
+ 3

2
)(3

2
− 3

2
+ 1) |I,mI = −1

2
〉 =

√
3~ |I,mI = −1

2
〉 (3.20)

Sandwiching S± and I± between |F±,mF = mS +mI〉 states, as decomposed in

Eqs. 3.4 and 3.5, we can compute the intra-manifold transition elements within F+:

〈m′S = ±1

2
,m′I |S± |mS = ∓1

2
,mI〉 = ~

√
(2±m′F )(2∓mF )

2I + 1
δm′F ,mF±1 (3.21)

〈m′S,m′I ± 1| I± |mS,mI〉 = ~
√

(I ∓mI)(I ±mI + 1)

√
(2±m′F )(2∓mF )

2I + 1
δm′F ,mF±1

(3.22)

and within F−:

〈m′S = ±1

2
,m′I |S± |mS = ∓1

2
,mI〉 = −~

√
(2∓m′F )(2±mF )

2I + 1
δm′F ,mF±1 (3.23)

〈m′S,m′I ± 1| I± |mS,mI〉 = −~
√

(I ∓mI)(I ±mI + 1)

√
(2∓m′F )(2±mF )

2I + 1
δm′F ,mF±1

(3.24)
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When calculating, I only consider the transition elements of S± ( since I± is heavily

suppressed by
∣∣∣gSgI ∣∣∣), using the state’s Clebsch-Gordan coefficients which include

full |S,mS, I,mI〉 contributions. For simple pen-and-paper analysis and to gain

intuition, it is convenient to calculate using only S, ignoring I. Values of the RF

transition elements are given by

〈1, 0|S+ |1,−1〉 = 〈1, 1|S+ |1, 0〉 = −~
√

2
4

= −~
√

1
8

= −0.3536~ (3.25)

〈2,−1|S+ |2,−2〉 = 〈2, 2|S+ |2, 1〉 = ~
√

4
4

= ~
√

2
8

= 0.5~ (3.26)

〈2, 0|S− |2,−1〉 = 〈2, 1|S− |2, 0〉 = ~
√

6
4

= ~
√

3
8

= 0.6124~ (3.27)

We can obtain exact values numerically from the eigenvector elements when diago-

nalizing the I + S basis at non-zero BDC ẑ field into the basis we call |F,mF 〉. The

following array gives numerical values of these 〈F ′,m′F |S±, z |F,mF 〉 transition el-

ements at 20 MHz / 28.58 Gauss, where the right vector is simply a label to the

order of the |F,mF 〉 basis states.



0 0.4958 0 0 0 −0.8698 0 0

0.4958 0 0.6090 0 0 0.8674 −0.6168 0

0 0.6090 0 0.6108 0 0.3520 1.0016 −0.3572

0 0 0.6108 0 0.5001 0 0.6114 0.8674

0 0 0 0.5001 0 0 0 0.8673

−0.8698 0.8674 0.3520 0 0 0 −0.3561 0

0 −0.6168 1.0016 0.6114 0 −0.3561 0 −0.3572

0 0 −0.3572 0.8674 0.8673 0 −0.3572 0





|2,+2〉

|2,+1〉

|2, 0〉

|2,−1〉

|2,−2〉

|1,+1〉

|1, 0〉

|1,−1〉


We have RF transitions just off the main diagonal, the top-right and bottom-left

corners have 3× 3 = 9 microwave transitions [60].
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3.3 Two-Level Theory

We can view any single transition in a more general two-level approach, which

allows us to write some exact expressions and generate some intuition about the

atomic system. We will later expand this two-level formalism to a multi-level ladder

system.

To begin our two-level discussion, we take two states, an excited state |e〉, and

a ground state |g〉 where the states and couplings can be hand-picked from the

preceding subsections. The total atomic wavefunction is

ΨA = Cee
−i~ωet |e〉+ Cge

−i~ωgt |g〉 =

Cee−i~ωet
Cge

−i~ωgt

 (3.28)

with relative amplitude coefficients Ce, Cg and state energy Ee = ~ωe, Eg = ~ωg. At

the end of an experiment, we have experimental access to the population ratios in

the |e〉 , |g〉 basis: |Ψ|2 = |Ce|2 + |Cg|2, constrained by |Ce|2 + |Cg|2 = 1.

Whichever pair of states we pick, they are separated by ∆Eeg = Ee − Eg =

~(ωe − ωg) = ~ωeg. I will subtract a potential offset from both states, defining the

excited state as the reference energy, and the ground an amount ~ωeg below.

ĤA |Ψ〉A = ~

0 0

0 −ωeg


|e〉
|g〉

 (3.29)

We now add a photon to the mix, or rather, a large driven AC magnetic field

|BRF |cos(ωRF t)x̂, comprised of many (N ' N + 1) photons. This linearly polarized

field has half strength in each circular polarization, and only one polarization is

‘felt’ by RF transitions within each of F±. The photon’s electric field cannot drive

transitions between hyperfine states, and can be safely ignored. We had attempted
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to quantified the effect as a far off-resonant (nearly DC) AC Stark Shift, which we

have found to be ≈ 1% of a resonant AC Zeeman shift.

To consider the addition of many photons, we should examine a single photon

absorption, recalling that polarization couples only certain transitions. An atom

will transition between |g〉 and 〈e| by absorbing a photon, promoting the electron

into a higher energy state by altering the spin state. Conversely, an atom in |e〉 state

is stimulated by a photon into 〈g|, emitting a coherent photon into the BRF field.

In either case, the ground state plus the photon makes the excited state, where

we recall the importance of polarization. It is convenient to consider stimulated

emission of the correct polarization, rather than absorbing the opposite polarization,

as the reverse process to absorption. Examining the energy difference after a single-

photon change in the RF magnetic field energy Ĥγ between the states with Nγ and

Nγ + 1 photons,

Ĥγ |Ψ〉γ = ~

0 0

0 ωRF


 |Nγ〉

|Nγ + 1〉

 (3.30)

The correlation between the atom state (e, g) and number of photons (Nγ, Nγ + 1)

prompts us to combine these into ‘dressed’ states:

|ΨD〉 =

 |e,Nγ〉

|g,Nγ + 1〉

 (3.31)

Considering the energy of such a system, ~ωRF plus the atomic spacing (~ωeg) yields

the bare state Hamiltonian

Ĥa + Ĥγ |ΨB〉 = ĤD |ΨD〉 = ~

0 0

0 ωRF − ωeg

 |ΨD〉 = ~

0 0

0 δ


 |e,Nγ〉

|g,Nγ + 1〉


(3.32)

Here, I introduce an important parameter, the ‘detuning’ δ ≡ (ωRF − ωeg). The
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detuning represents extra energy that the photon has, compared to the state sepa-

ration. Positive detuning (δ > 0, right-ward on many graphs) implies extra photon

energy added to a ground state. In contrast, negative detuning (δ < 0, left-ward

on many graphs) implies insufficient photon energy added to the ground state to

reach the excited state. Zero detuning (δ = 0, typically graph center) defines the

on-resonance condition, where the state mixing, interaction energy, ACZ force, and

trap depth are all maximized. When graphing the state energies as a function of

photon frequency on the x-axis, often shown in this thesis, the excited state (or

my mF = 0 choice of reference state) will be a flat line, as it contains no extra

photons. The ground state will have a positive slope with added photons, crossing

the excited energy line at the δ = 0 point. Excited states with fewer photons will

have a negative slope relative to the reference energy. This behavior is shown by

the gray lines in Fig. 3.2.

Any oscillating magnetic field with the proper polarization will generate an

interaction term, appearing as off-diagonal elements 〈e| − ~µ · ~BRF |g〉 in the Hamil-

tonian, as we have just examined in Sec. 3.2.

This term will govern how quickly atoms transfer between |e〉 and |g〉. In the

Schrödinger picture, a diagonal Hamiltonian matrix denotes energy in each of the

basis vector |Ψ〉 states. The presence of off-diagonal elements suggests that there is

a better basis to read the energy of the system because the Hamiltonian acts as a

time operator, and there will be population density transfer between states in the

initial basis.

We are constrained by the allowed transitions 〈e| ↔ |g〉 between these two

atomic spin states, driven by a linear oscillating field perpendicular to ẑ, by con-

struction:

〈e| − ~µ · |BRF | cos(ωRF t)x̂ |g〉 (3.33)
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Spin operators S± and I±, contained in ~µ can transform |g〉 into 〈e|, as we have

examined in Sec. 3.2. This interaction Hamiltonian matrix has the general form:

ĤI |ΨB〉 = ~

 0 Ωeg cos(ωRF t)

Ω∗eg cos(ωRF t) 0


 |e,Nγ〉

|g,Nγ + 1〉

 (3.34)

The value Ωeg = 〈e| − ~µ · ~BRF |g〉 represents the Rabi Frequency, an important

parameter in our investigation. Its magnitude scales with field amplitude |BRF |,

as well as the Clebsch-Gordan coefficients from the previous section. Ignoring the

nuclear spin, the Rabi frequency is given by:

~Ωeg = 〈e| − µ ·BRF |g〉 =
µBgS
~
〈e| S+B−

2
+
S−B+

2
+ SzBRF,z |g〉 (3.35)

Accounting for factors of 2 in the denominator, the one given is due to our circular

definition (A± = Ax± iAy for any vector ~A) acting on SxBx or SyBy, another comes

from projecting a linear field into a circular one |B+| = |B−| = |BRF |/2, another

from the rotating wave approximation (in Appx. A), and then the Clebsch-Gordan

coefficients give another factor of

√
{2,4,6}

4
, depending on choice of (e, g). The value

of gS is nearly 2, so it can cancel one of the polarization factors. We can pull out a

common factor that we call the ‘Rabi Strength’:

Ω0 ≡
µB|B±|

~
(3.36)

which measures the circular field alone, either projecting from the linear BRF x̂

or generating B± on their own, as we discuss later. This ‘strength’ is everything

in the off-diagonal of the final dressed atom Hamiltonian but the Clebsch-Gordan

coefficient and a later 1
2

from the rotating wave approximation (RWA). The value
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Ω0 lacks transition information, which is retained in the full value:

Ωeg = Ω0
〈e| gSS± |g〉

2~
(3.37)

In calculations, we typically use h instead of ~ to work in frequency units (identified

with the RF system’s fRF output) instead of angular frequencies (ωRF ) which are

preferred when communicating physics. The values of Ω0 reported in Chap. 4 match

the typical reporting definition of Ω = 2π×(value), although due to our non-uniform

circular definitions, this definition may differ from others by a factor of 2. It is a

good parametric handle on ‘strength’ for the whole RF transition, rather than giving

multiple unique numbers for each Hermitian pair.

We now add in this off-diagonal energy −µ·BRF cos(ωRF t)x̂ to our Hamiltonian:

ĤD |ΨD〉 = ~

 0 Ωeg/2

Ω∗eg/2 δ


 |e,Nγ〉

|g,Nγ + 1〉

 (3.38)

where we have performed the rotating wave approximation, which we will discuss

later in this chapter.

The Hermitian conjugate term Ω∗eg is a bit difficult to analyze. Simple conju-

gation swaps S+B− and S−B+, but as we continue to argue and demonstrate, only

one polarization contributes to the entire interaction. We then invoke Ω∗eg ≡ Ωeg for

calculations, using the same S±B∓ combination in both elements that we know acts

on the manifold. These elements are hand-selected by physical motivations rather

than mathematical ones.

Finding the eigenvalues of this matrix yields the AC Zeeman energy eigenvalues

for the two states:

E± =
~
2

(
δ ±

√
δ2 + Ω2

eg

)
=

~
2

(δ ± Ω′) (3.39)
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and we can subtract out the basis states to measure just the added AC Zeeman

energy:

EACZ± = ±~
2

(
−|δ|+

√
δ2 + Ω2

eg

)
= ±~

2
(−|δ|+ Ω′) (3.40)

We use the ‘Generalized Rabi Frequency’ Ω′ =
√
δ2 + Ω2

eg. This parameter can

be viewed as the hypotenuse of a right triangle with legs δẑ and Ωegx̂, which acts

as a torque on the spin orientation between basis states. This vector is the green

Generalized Rabi vector on the Bloch sphere in Fig. 3.3.

We also get the eigenvectors of the interactive dressed system:

|+〉 = cos(θ) |g,Nγ + 1〉+ sin(θ) |e,Nγ〉 (3.41)

|−〉 = − sin(θ) |g,Nγ + 1〉+ cos(θ) |e,Nγ〉 (3.42)

where we use cos(θ) = Ωeg√
Ω2
eg+(Ω′−δ)2 and sin(θ) = Ω′−δ√

Ω2
eg+(Ω′−δ)2 . We plot both the

two-level AC Zeeman energies and state projections in Fig. 3.2.

We observe that θ is a population-tuning parameter, where the sign of detuning

and its relation to Ωeg determine the population ratio and phase between the initial

dressed states. In one sense, θ measures the polar angle on the Bloch sphere, where

pure dressed states are located at either the north or south pole (±1ẑ), as illustrated

in Fig. 3.3. Projections far off-resonance (|δ| � |Ωeg|) will keep atoms mostly in

their dressed states. In contrast, near resonance (|δ| ≈ |Ωeg|), the dressed states

necessarily mix, generating extra energy, which avoids the level crossing degeneracy.

We can leverage this behavior for a technique called Adiabatic Rapid Passage

(ARP), where we sweep detuning from one side of resonance to the other, flipping

the spin population between basis states as shown in Fig. 3.2. On the Bloch sphere,

this looks like the green vector rotating from ±ẑ to ∓ẑ in the xz-plane, while the

pink population arrow continually rotates around the green vector, settling at the
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FIG. 3.2: Dressed atom theory for a two-level atom. Top: AC Zeeman eigenstate
energy, normalized by Ω. Both dressed states and AC Zeeman eigenstates are labeled,
projecting to each other far off resonance. Middle: AC Zeeman energy shift of the
eigenstates relative to the dressed state energies. Bottom: Two-level population curves,
projecting |g,Nγ + 1〉 into |+〉 and |−〉. Either eigen-energy curve |+〉 or |−〉 has inverse
components in the dressed states |g,Nγ + 1〉 and |e,Nγ〉, which vary with δ/Ω.
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FIG. 3.3: Rotation on the Bloch sphere, one way to picture Rabi oscillations. The
population vector (pink) begins at a pure population at the ‘north pole’ along ẑ and
is rotated through one revolution around the generalized Rabi vector (green), which is
held slightly above resonance (δ > 0). An off-resonant flop leaves the population transfer
incomplete at the bottom, missing the ‘south pole’ before it rotates back up, marked by
the red dots.

opposite pole from where it started, creating a complete population transfer between

basis states.

I want to spend some time now with the meaning of Rabi frequency and how

we measure it. First, sweeping frequencies from pure states (|g,Nγ + 1〉 or |e,Nγ〉)

off-resonance can lock a population into one of the AC Zeeman curves (|+〉 or |−〉)

in Fig. 3.2, and the Rabi frequency is seen to alter energy, rendering Ω′ visible via

spectroscopy, relative to other states. The method we elect to use is rather direct, to

simply pulse on the signal near resonance and observe how the population evolves in

time. Taking this Bloch sphere picture, we could imagine observing the population

at fixed time steps through the procedure, represented by the ring of red dots.

The resonant condition will have Ω′ minimized to Ωeg, and fully sinusoidal transfer

between the basis states with time. Off resonance (as shown in Fig. 3.3), the ‘flop’

is not complete and has a faster period, per the definition of Ω′. In Chap. 4, we will
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discuss the case of Rabi flopping for five levels, beyond the two-level case presented

here.

3.4 AC Zeeman Force

In the case presented here, we look at a linearly polarized field BRF cos(ωRF t)x̂

(perpendicular to the quantizing axis ẑ), which generated coupling Ωeg, adjust-

ing energy in the system by mixing states, especially on resonance. Consider

a 1/r gradient in this field, as there might be in the magnetic near field of a

wire. We assume that the background BDC field is homogeneous in amplitude

and orientation, rendering δ constant over space. Recalling our AC Zeeman energy

EACZ± = ±~
2

(
−δ +

√
δ2 + Ω2

eg

)
, we can write the AC Zeeman two-level force

FACZ = −∇E± = ∓~
2

Ωeg

Ω′
dΩeg

dr
(3.43)

If our current of amplitude I0 is a current line current (in the thin wire approxi-

mation), then we have |BRF | = µ0I0
2πr

and ∇BRF = −µ0I0
2πr2

giving the values of Ωeg,

Ω′, and dΩeg
dr

in this simple model. Later, we use models which include the spatial

extent of the wires, splitting the whole current into many constituent line currents

to sum over. In experiment, where we don’t have an exact model of the wires, we

need empirical measurements of Ωeg,
d
dr

(Ωeg), and δ at the atoms’ location to predict

an experimental force, ab initio.

Indeed, this concept is at the core of this work: we generate an RF magnetic

field that varies in amplitude over space, leading to spatial gradients in the coupling

components of Eq. 3.38, which affect the AC Zeeman energy when we diagonalize

the couplings with the detuning, generating a spatially varying Ω′eg. If we can tailor

B±(r)→ Ωeg(r) to have a high gradient, as near an atom chip, we can have a high
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impulse on atoms. If we can make a local minimum in B±(x, y) → Ωeg(x, y), the

upward gradient around it in all directions will provide a spatial restoring force for

atoms, trapping them.

This concludes the pedagogical work using the two-level system. We will now

show that we can establish a five-level dressed state Hamiltonian, giving us the AC

Zeeman eigenvalues for the entire intra-manifold case after diagonalization. Much of

the intuition from the two-level case still applies in a chained-two-level-ladder sys-

tem, but clean expressions for EACZ and population are cumbersome when available,

and there is not an easy Bloch sphere picture to help us out.

3.5 Five-level Eigenstate Curves

The mathematical foundation for this section is laid out in Appendix A, which

derives a time-independent Hamiltonian by introducing time-dependent basis states.

I elect to retain the low-field limit Clebsch-Gordan coefficients in their analytic

forms, as it is instructive. The relevant result from that section is given here:

i~
d

dt



C̃-2

C̃-1

C̃0

C̃+1

C̃+2


= ~



∆-2

√
4

4
Ω0 0 0 0

√
4

4
Ω∗0 ∆-1

√
6

4
Ω0 0 0

0
√

6
4

Ω∗0 ∆0

√
6

4
Ω0 0

0 0
√

6
4

Ω∗0 ∆+1

√
4

4
Ω0

0 0 0
√

4
4

Ω∗0 ∆+2





C̃-2

C̃-1

C̃0

C̃+1

C̃+2


(3.44)

The ∆ terms contain both the detuning and the slight non-degeneracy of atomic

states, and still ~Ω0 = µB|B±|,

We now look to diagonalize the Hamiltonian derived in Eq. 3.44, examining the

eigenstates and their energies as we did in the two-level case. We do this numerically

by plugging in a range of fRF frequencies, with couplings Ωeg/2π that are state- and
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BDC- dependent, mixing I and S into the |F±,mF 〉 basis, as described earlier in this

chapter.

We show in Fig. 3.4 the five- and three-level (F+ and F−) AC Zeeman eigen-

states, for a resonance held near 20 MHz (BDC ≈ 28.58 Gauss), with Ω0/2π =

µB|B±|/h = 500 kHz (|B±| ≈ 0.36 Gauss). We show the DC Zeeman energy levels

in Fig. 3.4(a1,a2), with a dashed line indicating our resonance. These mF states

are slightly non-degenerate, seen in the gray line crossings of Fig. 3.4(b1,b2). In

Fig. 3.4(b1,b2), we show the result of diagonalizing Eq. A.10 to obtain the AC Zee-

man energies. The plots in Fig. 3.4(c1,c2) give just the added energy compared to

the Ω0 = 0 condition. This energy difference between bare states and the dressed

eigenenergy curves defines the AC Zeeman energy in the system. We use the EACZ

calculations of Fig. 3.4(c1,c2) combined with an ad-hoc gradient of 2π× 5 kHz/µm,

to obtain the RF AC Zeeman force curves shown in Fig. 3.4(d1,d2).

The lower half of Fig. 3.4 represents the dressed state projections of the AC

Zeeman states, as a function of frequency, a more compounded version of the cos2(θ)

eigenvector terms from the two-level case.

We can see interesting near-resonant structure which requires this sort of ad-

vanced numeric calculation. If we were to increase Ω0 by a large factor, this has the

effect of broadening each resonance (recalling δ/Ω as a good handle) and ‘washing

out’ some of the structure which appears at low coupling. In fact, at very low Ω0

power, only the |++〉 and |+〉 curves separate at the four single-photon resonances.

When Ω0 is large enough, these real transitions broaden to affect the three connec-

tion points of |+〉 to |0〉, then the two points into |−〉, finally to the one ‘resonance’

in |−−〉 which connects mF = 2 and mF = −2 via a composite coupling of sorts.

The sign of the force curves lets us know which states are high- or low- field

seeking given a gradient, having their energy lowered by either increasing or de-

creasing coupling, respectively. We note that the strongest weak-field seeker is the
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FIG. 3.4: AC Zeeman states, energies, forces, and populations. Top eight: Plots
of five level and three AC Zeeman states, described in the text. In this simulation,
Ω0/2π = 500 kHz, ∇Ω0/2π = 5kHz

µm Bottom eight: Population projections from each
AC Zeeman state into dressed states vs. applied frequency detuning. Each title gives
the state name and matches color with (b-d), but the plotted curves match color to the
dressed states |mF , N ∓mF 〉, whose mF part is given in (a).
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|++〉 state, which can populate either |mF = +2〉 at red detuning or |mF = −2〉 at

blue detuning. Similarly, the F− = 1 manifold’s |+′〉 state is a weak-field seeker,

which can occupy either |mF = −1〉 at red detuning or |mF = +1〉 at blue detuning.

While DC Zeeman mF states are ‘locked-in’ as DC high- or low-field seekers by the

sign of mFgF , they can all be trapped as low-field seekers in an AC Zeeman trap.

One curiosity comes from the F+ = 2’s |+〉 state, which is high-field seeking

at low power, but low-field seeking at high power, making it a medium-field seeker

near the four atomic resonances.

3.6 Summary

This covers the atomic theory behind the AC Zeeman effect, as relevant to our

purposes. To summarize, applying a oscillating magnetic field that nearly matches

the frequency of atomic transitions will induce absorption and emission, driving Rabi

oscillations between the states, which alters their total energy. Leveraging a high

gradient in this energy, we can generate a spin-specific force on atoms or trap them

in a local minimum of the B± field, as we will go on to demonstrate in Chaps. 5 and

7. However, we first discuss the process of measuring Rabi frequency in Chap. 4.
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CHAPTER 4

Rabi Frequency Measurement

Rabi ‘flopping’ is the oscillation of population between atomic states that occurs

when atoms are driven by a near-resonant electromagnetic wave. The spin vector of

the atom precesses around an effective magnetic field, ‘flopping’ population between

states, governed in time by the amplitude and frequency of the applied electromag-

netic waves. On resonance, two states flop like a sine wave with an angular frequency

given by the Rabi Frequency Ωeg, a definition that gets fuzzy when discussing five

non-degenerate levels with unique coupling coefficients. In this chapter, we observe

flopping at incremental fixed times, giving experimental population evolution over

time, which we fit to get the Rabi frequency, representing the effective driving field

strength for the atomic system.

Section 4.1 introduces the concepts and definitions at work in this chapter. We

separate this chapter into measurements corresponding to 1) the force experiment

of Chap. 5, and 2) the trap experiment of Chap. 7, although the analysis shares

many details. We discuss the force setup in Sec. 4.2, moving to the actual measure-

ment technique in Sec. 4.2.1, fitting techniques in Sec. 4.2.2, and power scaling in

Sec. 4.2.3. We discuss Rabi frequency gradient measurements in Sec. 4.2.4, including
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the position shifting ‘sag’ method in Sec. 4.2.5. We move on to measurements for

the trap experiment in Sec. 4.3, including a ‘triangulation’ gradient measurement in

Sec. 4.3.1. In Sec. 4.4, we list the fit values for Rabi frequency measurements which

provide the ‘theory’ curves in later chapters. Lastly, we summarize the chapter in

Sec. 4.5.

4.1 Introduction

In our case, Rabi ‘flopping’ will occur for the four transitions between adjacent

states in a five-level ladder arrangement, which then flop into successive states by the

same driving field. The net effect is a cyclic five-level flop in primary mF population

from 2 → 1 → 0 → −1 → −2 → −1 → 0 → 1 → 2 → . . . We can simulate this

phenomenon by directly time-evolving the dressed state population vector (nearly

pure |F+,mF = +2, Nγ − 2〉) with the Hamiltonian given in Eq. A.10, and watching

the mF basis vectors as they evolve in time, given a constant applied frequency and

magnetic field amplitude.

Having an empirical measurement of Ωeg is a powerful analytic tool, which

can generate theory curves to compare with data. We also learn about the power

coupling of the signal into the atom chip (assuming Ωeg ∝ I0/r), and knowing the

power P0 sent to the chip, we can deduce for a given frequency the impedance

Z(ωRF ) = P0/I
2
0 for the system. We use this fact to measure Rabi frequency at low

values of applied power, which we can then directly scale to much larger values of

Ωeg for our experiment and the design of future high-power schemes. We see roughly

the same Rabi gradient using 15 mW of 8.4 MHz RF power as for 3.3 W of 6.8 GHz

of microwave power, due to power coupling differences as discussed in Sec. 2.9. In

the end, direct measurements of the atoms showing the Rabi frequency are our best

empirical metric on the strength of the ACZ effect, especially across space.
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I want to be very explicit about how Rabi frequency and ‘strength’ are defined

in this chapter since the idea is a bit different to grasp in N−level systems. We

desire to algebraically pull out one value for the entire five-level system, which gets

scaled by Clebsch-Gordan coefficients into the off-diagonal coupling elements. There

is always Ωeg
2

off-diagonal, motivated by the RWA, to yield a form like the two-level

Hamiltonian in Eq. 3.38. What remains we seek to simplify by separating the field

and the transition: Ωeg = 〈e| − ~µ · ~B |g〉 = Ω0
〈e|gsS±|g〉

2~ , where Ω0 = µB|B∓|/~. We

used different working definitions between the force (Chap 5) and trap (Chap. 7)

experiments, and I want to explain those choices now as a brief narrative for different

possible representations and where we ended up. In brief, the two measurements

differ by a factor of
√

1
8
≈ 0.3536, where this factor apparently lowers the force Rabi

frequency measurements compared to the trap measurements, although we report

values explicitly with this factor included.

During the earlier force experiment, the analysis was sufficient using the low-

BDC terms given in Eq. 3.25. We pull out a common
√

2
2I+1

=
√

1
8

= 0.3536 . . . ≈ 1
3

factor such that the upper manifold’s four transitions were
√

2 and
√

3 times it,

and the lower manifold gets a −1. The value we vary in analysis is then
√

1
8
Ω0

for these measurements. This definition is a bit closer to a traditional definition of

Rabi frequency, but is only accurate int he low-BDC limit. When we have significant

deviations in Clebsch-Gordan coefficients at higher field (Sec. 3.1), or simply desire

more accuracy, the only part that remains common is Ω0 ≡ µB|B±|/~.

For the trapping experiment at higher BDC , and armed with a proper five-level

|I,mI , S,mS〉 → |F,mF 〉 basis generating script, we take a new working variable.

We leave the
√

1
8

in the numerical Clebsch-Gordan coefficients they belong to and

vary only what we define as the Rabi strength Ω0. To translate into a ‘proper’

Rabi frequency, one would need to reduce the stated Ω0/2π values by multiplying
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numbers nearly
√

2
8

= 0.5 or
√

3
8
≈ 0.6124 for the ‘outer’ and ‘inner’ F+ manifold

transitions, respectively, as well as gS.

We measure this Rabi value and gradient differently for two different systems:

in the ODT (and a sagging ODT) to calibrate the ACZ Force data in Chap. 5, and

for each of two trapping wires for Chap. 7 to accurately simulate trapping fields. In

the ODT case, we apply the field while atoms are trapped and then drop them. In

the AC Zeeman trap case, we turn off one of the two generating fields, effectively

turning on a diagonal-oriented linear field at the atoms’ location.

4.2 Rabi Measurement with the Force Experiment

For the Rabi frequency and gradient measurements necessary for simulating the

force measurement, IDC in the quantizing field coils was held at 5 Amps, producing

11.98 (∼12) Gauss BDC ẑ. We picked a frequency as close to the middle of the four

resonances as we could manage, 8.375 MHz, which was within a few kHz of the

|2,−2〉 ↔ |2,+2〉 crossing in the |−−〉 state, and the mF = 0 part of the |++〉

state. We observe noise in the BDC field producing 15 kHz detuning noise, causing

shot-to-shot noise in population ratios when we sweep in and drop off very close to

resonance, so the best I could do was knowing it is between 8.370 and 8.380 MHz.

Anywhere in this range left about the same population randomness over a few shots.

For the force Rabi measurement, RF frequency is produced by mixing 108.375 MHz

single frequency from the AD9910 ‘Prince Charming’ DDS with 100 MHz from an

SRS SG384 signal generator. From the mixer (an old Mini-Circuits ZAD-1), the

signal passes through a variable voltage attenuator (VVA, Mini-Circuits ZX73-2500-

S+) which is operated at a choice of two values of power, ∼1.3 dB apart. After the

VVA, the signal goes through a TTL-controlled high isolation RF switch (Mini-

Circuits ZASW-2-50DR+), which operates the time gating, and then through a
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+30 dB, 2 Watt amplifier (Delta RF LA2-1-525-30 model 4360), which outputs ei-

ther 11.36 dBm or 10.06 dBm, depending on VVA setting, which goes to the atom

chip via a BNC cable.

Time variation of the RF uses a delay pulse generator (SRS DG535) which turns

a single long TTL input from the Adwin into a short variable TTL pulse which opens

the RF switch for a few µs at a time. The trigger also opens a switch internal to

the ‘Prince-Charming’ DDS. If left open, a significant amount of RF power is still

around (ballpark -60 dBm). The DDS switch reduces power before the (non-linear)

mixer and is required to further suppress residual power in the RF system by 30dB

or more (it falls below the spectrum analyzers noise floor at ∼ -90dBm). The VVA

is ‘slow,’ requiring > 20µs hold time for full ‘on’ condition, so the VVA is turned

on 100 µs (or more) before it is used.

It was discovered in mid-February 2019 that the turn-on time of some unknown

component is non-negligible, a trait that was not observed previously. Rabi flop

measurements seemed to remain at initial population ratios between 1-2 µs before

flopping, whereas previous measurements began right away. Direct measurement of

the RF signal shows amplitude increasing from zero to full power over 1 µs to about

1.75 µs after the TTL trigger start. In the process of fitting (described later), this

parameter was fit to nearly 1.25 µs.

4.2.1 Flopping Experiment

In the AC Zeeman force experiment, roughly 300,000 atoms at ∼ 360 nK are

loaded into an optical dipole trap (ODT) directly under the ‘U’-wire, through which

the RF current is driven, seen in Fig. 5.3. The RF magnetic field from this current

will ‘flop’ the atoms within the F=2 hyperfine manifold between 5 different states,

labeled by mF projection (+2, +1, 0, -1, -2). We undertook one brief study which
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suggested the flopping rates were equal whether we began in the +2 or -2 state, so

we begin all flops in the +2 state, same as the initially prepared state.

While RF is applied, atoms evolve from almost full population in the +2 state,

partially populating the +1 → 0 → −1 states, before fully populating the -2 state

and then reversing the cycle. After some time flopping with the RF on, we turn the

RF off and drop the atoms from the ODT. We then apply a Stern-Gerlach gradient

horizontally via a ∼ 1-inch copper coil just outside of the vacuum chamber (see

Figs. 2.1 or 7.4), separating the single atom cloud of mixed mF population into

five separate atom clouds by mF population. After this horizontal Stern-Gerlach

separation, and before imaging, we apply a ‘pre-pulse’ of both trap and repump

light to bring all atoms to the |F = 2,mF = 2〉 state before taking an absorption

image of the five cold atom clouds. Typical Rabi flop data is given at the top of

Fig. 4.1.

To analyze the absorption images, we use MATLAB to Gaussian fit each of the

five Stern-Gerlach separated clouds, using two different methods, which we refined

over time. We always zoom in to a region of interest (ROI) which contains the atoms,

although we parse this data two different ways. For the force Rabi measurement,

we take fixed-width (x) sections of each of the five atom clouds and fit a vertical

Gaussian (over y) for each mF state separately. In the force measurements, atoms

were observed to oscillate vertically, so we had to take elongated vertical rectangles

as our region of interest. For the trap measurement, we sum vertically (over y)

and fit five horizontal (over x) Gaussians simultaneously using the entire region

containing atoms for the trap Rabi measurement, minimizing parameters by giving

scaled spacing and position offsets to each cloud. This five-Gaussian fit is shown in

the middle and bottom

These atom populations (from Gaussian height and width) are summed together

for a total atom number. Then each mF population is divided into the total for each
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FIG. 4.1: Example of a five-Gaussian fit of Rabi oscillation data for the trap exper-
iment. Top: False-color atom optical density measurements after an RF Rabi pulse.
Middle: Data from the top image, summed vertically into the x-profile, including the
five-Gaussian fits. Bottom: Fitting results from MATLAB, giving the fit function and
values for this example.
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state’s population ratio.

Rabi pulses are near-square and taken in randomized duration order, stepping

by 100-300 ns from t = 0 up to 20 µs depending on the set. By this end time,

resolution in population ratio is below about half of the initial resolution, and going

longer does not aid in Rabi frequency determination, shown in Fig. 4.2. We do not

have an exact explanation for the Rabi decoherence over time, but there are a few

suggestions that we can or cannot rule out:

• Rabi gradient over the cloud flops atoms at different rates spatially (backed up

by vertical position shifts as flopping goes on).

• Non-degenerate detunings to each of the intra-manifold resonances (has an effect,

but the theory curves also contain this information).

• Impure initial state vector (included parameter in the theory curves).

• Spin-spin inelastic collisions (possible, but the collision rate should be lower than

the decoherence observed. We would love a good model for this, I had tried some

ansatz’s, but nothing matched well, so all were scrapped).

• Noise in background BDC (likely a contribution but hard to quantify).

4.2.2 Fitting

The time-dependent results of experimental Rabi flopping are compared against

a MATLAB-computed time-evolution of the AC Zeeman Hamiltonian for the same

BDC and RF frequency, shown in Fig. 4.2 for a force measurement and 4.5 for all trap

measurements. We then performed reduced Chi-squared (χ2) fits using population

ratio values and their associated errors, shown in Fig. 4.3. Shuangli Du wrote the

bulk of this fitting code.
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FIG. 4.2: Example of a Rabi frequeny data and a MATLAB fit for each mF state, from
the force measurements. Rabi pulse times on the x-axis increment by 0.4 µs out to 14
µs, yielding populations ratios on each state’s y-axis.
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FIG. 4.3: Sample Chi-squared values across theory Rabi Frequencies, for the 20 MHz
U case of Fig. 4.5. These fits illustrate why we average the mF = ±2 states, and neglect
the possibly poor fits of the states in between.
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When we go to fit, the only free parameters are the reported Rabi strength

Ω0 = µB|B±|/~ (
√

1
8
Ω0 in the force data), the initial timing delay, and the initial

population ratio (the normalized amount of mF = 1 contamination in a mostly

mF = 2 sample). We vary each of these parameters independently until all sets

converged to the reported values. The Rabi frequency is scanned locally over a

few kHz, and a summary χ2 is calculated as the difference between experiment and

calculated population ratios, reduced by the error in measurement. That is, for

population ratios R:

χ2
mF

=

tend∑
t=0

(Rexp(t)−Rcalc(t))
2

σ2
exp

This process is carried out over a range of frequencies, altering the values in Rcalc,

and providing a χ2 dependence on Rabi frequency for each mF state.

Typically, only the |2,+2〉 and |2,−2〉 states provided the expected parabolic

dependence of χ2 on the frequency, as their top-to-bottom range was twice that of

the mF = {+1, 0,−1} states, as seen in Fig. 4.3. For parabolic fits of the form

y = ax2 + bx + c, the error is defined by σ =
√

2
a
. We then perform a weighted

arithmetic average of these two values to obtain the mean Rabi frequency for the

set, reported as the Rabi strength.

4.2.3 Scaling

One powerful technique is the ability to measure Rabi freuqency at a known

low power, and scale it up and down to different power without taking new mea-

surements. Among the six Rabi frequency gradient measurements (Fig. 4.4) are

four at lower (-1.34 dB) power and two at full power. Since the Rabi frequency

scales with the magnetic field BAC , which scales with the RF current IAC , which

scales with power as P = I2R, the Rabi frequency should scale as the square-root of

power. So to scale up to ‘full’ power, we multiply the Rabi frequencies obtained at
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low power by the ‘power factor’ of
√

10
1.34
10 =

√
100.134 ≈ 1.167 times. A low power

Rabi frequency measurement is scaled up by this procedure and shown as the red

downward triangles in Fig. 4.4, while unscaled measurements at full power are given

as the blue upward triangles in Fig. 4.4.

4.2.4 Rabi Gradient

If we want to know the AC Zeeman Force and not just the ACZ energy, then

just as important as knowing the Rabi frequency is knowing the Rabi frequency

gradient. Recall for the two-state system that the ACZ force is given by:

~FACZ± = ∓~∇Ωeg(~r)
~
2

Ωeg√
δ2 + Ω2

eg

Knowledge of the spatial dependence of the ACZ energy is crucial. We assume a

local linear gradient of the Rabi gradient, which is a good enough approximation

far from the chip (∼100 µm).

With good Rabi frequency measurements at two (or more) known locations, we

can perform a linear fit through these data points to determine the local gradient

of the Rabi strength, as shown in Fig. 4.4. Due to the ODT wander, we had to take

empirical position measurements for each set.

Attempts were made on the day of taking AC Zeeman force data to determine a

Rabi gradient by taking measurements at two positions set by translating the ODT

beam. This translation was attempted with one turn of the vertical adjustment

knob on a tilt plate holding a glass wedge, positioned after the focusing lens of the

main beam. This translated atoms about 4 µm but had a measured uncertainty

just as large. Therefore, a gradient (∆Ωeg/∆y) could not be well established by this

data, although it did provide a good Rabi frequency measurement for atoms.

Measurements of ACZ force and Rabi flopping were taken with the ‘radial’
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camera, with pixel resolution = 7.4 µm/px. However, the axial camera has almost

double the spatial resolution, at 4.65 µm per pixel. Therefore, this camera was

used to more accurately determine the vertical position of the atoms after a very

short time of flight from the ODT. The accuracy of this measurement is enhanced by

measuring 10-20 frames of dropped atoms. As discussed in the Apparatus chapter 2,

we observe a long-term drift in ODT position during this period, which complicates

the position measurements, shown in Fig. 4.4 and Tab. 4.1.

4.2.5 “Sag”

After some trial-and-error and partial realignments of the ODT, we were able

to perform a different type of repeatable vertical position adjustment of the atoms

in the ODT. It is preferred to manual adjustment of the ODT beam position, which

cannot be guaranteed to return to the same place. This method, termed ‘trap sag,’ is

achieved by lowering the total power of the ODT so that gravity ‘sags’ the trapping

potential. A parabolic (E = ay2) trap with a linear gravitational gradient (E = gy)

will have a center (dE/dy) at y0 = −g
2a

. Adjusting a has the effect of translating the

trap bottom, as well as incidentally adjusting trapping frequencies.

Tuning the power of the trap is achieved by a feedback loop between a small

light pick-off into a photodiode (post fiber) and the power sent to a 40 MHz acousto-

optical modulator (AOM, pre-fiber) whose first order becomes the whole ODT. This

system is referenced to an Adwin-supplied analog voltage, which can be adjusted.

Full trapping uses -9.3 V as the reference value, with the absolute value proportional

to ODT power. Atoms can remain trapped down to about a -5 V reference value,

with significant loss starting at about -6 V. A rough relationship is that we get

about 3.5 µm of sag for every Volt lower in reference value. For Rabi gradient

measurements, we used -7 and -9.3 V, providing 6-8 µm of difference to measure
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over, with errors of roughly 0.2-0.3 µm in each position after averaging 11 frames

each.

4.3 Rabi Measurement with the Trap Experiment

This measurement, like the trap experiment, uses a nominal resonance of 20 MHz

at 28.58 G. For the trap Rabi frequnecy measurement shown in Fig. 4.5, we use the

FlexDDS from Sec. 2.6, with its signal sent through Fluffy, described in Sec. 2.7

with nominal 400 mW of RF power in each trace. We took measurements by sim-

ply turning off one of the two trapping wires, and watching the atoms evolve. For

atoms who were in a local zero of the trapping field, this sudden jump to high RF

magnetic amplitude acts in the same way as turning on a single wire had in the force

measurements. Indeed, the analysis of matching numerical solutions to empirically

evolving mF states follows the same procedure outlined above.

One difference in this measurement is that we elect to repeat it off resonance,

both red of resonance at 19.5 MHz, on resonance at 20 MHz, and blue at 20.5 MHz,

given at the left, middle, and right plots in Fig. 4.5, respectively. The top row

of Fig. 4.5 gives U-wire measurements and the bottom row has the Z-wire’s data.

In a two-level case, atoms would flop faster off resonance at the generalized Rabi

frequency Ω′ =
√
δ2 + Ω2

0, but an easy sine fit is not available in the five-level

flopping case. The numerical comparison for fitting has this detuning information

included on the diagonal, and we fit varying the off diagonal value Ω0 (Eq. A.10).

Values for Rabi frequency (as Ω0) from the fits shown in Fig. 4.5 are listed in

Table 4.2.
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FIG. 4.5: Examples of Rabi flopping data and fits for two trap wires, U (top) and
Z (bottom) at three different RF frequencies (bottom 19.5 MHz, middle 20 MHz, top
20.5 MHz). Ratio is determined by individual state population, divided by the sum of
all five state populations. Colors for the (+2, +1, 0, -1, -2) mF states are (blue, cyan,
green, magenta, red). While the experimental data decoheres, the theory curve does not
account for this. Free parameters are the Rabi frequency, initial time delay, and intial
population ratio.

4.3.1 Push Triangulation

When we test the AC Zeeman trap, it is not so clear where the trap location

is with respect to the chip surface and its generating wires. Knowing position will

help ‘back out’ values for current in the wires, but the gradient Value information

is not needed in this case. We elect to leverage the gradient to give atoms a push

diagonally from either wire, revealing an inclination angle for the applied force.

Applying a non-sweeping pulse projects the |2,+2〉 state into the low-field seeking

|++〉 state red of resonance, and the high-field seeking |−−〉 state blue of resonance.

We compare a push, pull, and no force to generate the diagonal lines in Fig. 4.6. In

a simple geometric picture, we can let each of these angles point back to the center

of either wire separated by a known distance, triangulating the initial trap location.

A schematic diagram for the mean case is shown in Fig. 4.6, and this uncertainty in

position remains a significant source of error in our theory curves.

Since the measured Rabi frequency for the Z-wire is higher than that of the U-
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Position/Set Power
√

1
8
Ω0/2π (kHz) error (kHz) height (µm) error (µm)

High Full 372.493 1.481 2.4867 0.2680
Low Full 350.449 2.250 8.635 0.2506

first High Low 371.077 1.385 3.9275 0.2123
second High Low 380.452 2.544 0 0.3245

first Low Low 355.306 2.180 9.4685 0.2966
second Low Low 348.101 1.771 9.3197 0.3068

Gradient kHz/µm: 3.32 0.55 - -

TABLE 4.1: Table of Rabi Frequency (as Rabi ‘strength’ Ω0/2π, including
√

1
8 , see

Sec. 4) measurements for the ACZ force experiment, scaled up to full power. Data is
also visualized in Fig. 5.15, yielding the local Rabi gradient, given in the last row.

Signal Applied fRF Ω0/2π (MHz) Error (kHz) Time Offset Initial mF = 1

U 19.5 5.617765 5.698 0.66709 0.03132
U 20.0 5.516618 5.002 0.65399 0.14759
U 20.5 5.857396 10.002 0.67547 0.10958

Z 19.5 5.644003 9.617 0.72806 0.10279
Z 20.0 5.691406 7.948 0.72384 0.14376
Z 20.5 5.789243 9.914 0.72241 0.15019

U (mean) 5.597 0.148
Z (mean) 5.705 0.0626

TABLE 4.2: Table of Rabi Frequency (as Rabi ‘strength’ Ω0/2π = µB |B±|/h) measure-
ments for the ACZ trap experiment. These values are the fits in Fig. 4.5.

wire, we would have expected a trap on the lower-current side (rightward in Fig. 4.6),

per arguments in Chap. 6, which is opposite the experimental finding here. This

suggests a systematic error in this triangulation method when it comes to assessing

the actual trap position.

4.4 Compiled Measurements

We have the force/gradient measurements from Fig. 4.4 in Tab. 4.1, and the

measurements for the two trapping lines in Fig. 4.6 in Tab. 4.2.
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4.5 Summary

While the formal Rabi frequency is defined well for the sinusoidal population

transfer between only two states, we expand the definition a bit to be a useful

parameter governing the five- and three-level behavior as well. This requires making

a motivated re-definition using the Rabi strength (Ω0 = µBB±/~), which measures

the available oscillating field, but must be de-rated to the specific transitions within

the ladder-like manifold.

Rabi frequency measurements are often performed indirectly, observing spectro-

scopically the shift in energy levels using a weak probe field. We elect to measure it

rather directly, observing the time-evolving atom population with varying RF pulse

lengths. These atom number evolution data is then compared to a numerically-

generated theory Rabi flop, and fit to as few variables as are justifiable: the Rabi

strength, initial state impurity, and time delay. Additional parameters which govern

the de-phasing or loss in signal strength can make these fits better, although we do

not have a proper model at the present time.

The value of Rabi frequency (or Ω0), along with BDC and δ entirely determine

the energy structure of the resultant AC Zeeman potential. We prefer using the

atoms as an empirical measuring tool of the Rabi frequency at the trap position (or

over space, as in Appx. C), over relying on simulations, because effective coupling

and wire cross-talk are unknown.

Further, measurements of Rabi gradient are important, especially when predict-

ing the AC Zeeman force for Chap. 5, and for determining trap location in Chap. 7.

These measurements are necessary for later theory curves, but the process of Rabi

fitting is a little too pedantic for inclusion in those later experiments.
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CHAPTER 5

RF AC Zeeman Force

As atom chips gain utility, new uses for radiofrequency (RF) and microwave

(µw) signals in current traces can aid in diverse fields of atom and ion chip research:

trapping, selective evaporation, or population transfer between states without the

need for lasers. One application for RF-controlled cold atoms is in matter-wave inter-

ferometry, which measures small energy shifts in spatially separated states. Adding

a spin-specific force to a spin-independent trap can shift positions for specific states,

generating interferometer arm separation, which is helpful for some measurements

but cannot usefully measure inertial forces. We view the work of this chapter as

a calibrating stepping-stone toward fully state-specific trapping, as demonstrate in

Chap. 7, which can enable arbitrary ‘arm’ motion for useful gradiometry.

This chapter demonstrates a force-producing tool for cold atoms using an AC

magnetic field. We test intra-manifold applications of the AC Zeeman (ACZ) effect,

using RF transitions within the F+ = 2 manifold in contrast to the inter -manifold

transition near 6.8 GHz in 87Rb. Sweeping frequency of the RF from either side of

resonance can project each mF 6= 0 state into a high- or a low-field seeking state,

necessarily mixing spin states near resonance, as we show.
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We demonstrate the RF AC Zeeman force with background BDC=12 Gauss,

which corresponds to RF transitions around 8.4 MHz for ultracold 87Rb atoms in

five states within the 5S1/2 F=2 hyperfine manifold. We observe almost three times

the force of gravity for ∼15 mW of applied RF power at a distance of ∼100 µm

from the RF current. Our measurements are consistent with theoretical predictions

and demonstrate the spin-state dependence of the force and its resonant and bipolar

behavior. As we examine this force for use in atom trapping, we observe the time

dependence of dressed state mixing as a function of detuning and power.

This chapter is organized into the following main sections: Section 5.1 outlines

the theory of the AC Zeeman force for intramanifold transitions. Section 5.2 de-

tails the experimental method used and the main force measurements. Section 5.3

demonstrates a procedure we call the AC Stern-Gerlach effect. Section 5.4 analyzes

the time evolution of states subject to continued AC Zeeman energy shifts. Next,

we discuss two experimental calibrations required for this experiment, the Rabi fre-

quency and gradient in Sec. 5.5 and the background BDC gradient in Sec. 5.5.1. We

conclude in Sec. 5.6.

5.1 Theory

We focus on the 5S1/2 ground state of 87Rb, in the upper hyperfine manifold,

F=2. A small DC magnetic field BDC separates five (2F+1) quantized mF pro-

jections almost linearly and determines the energy separation between these states.

We use the dressed atom basis, where a field of N photons at angular frequency ωRF

and magnitude BAC envelops the atoms, which can absorb from or emit into the RF

field via M1 transition, changing mF level by ±1 and photon number by ∓1. The

dressed atom basis is given per atom for five near-degenerate energy levels, selecting

mF = 0 as the reference. We then have: |mF , NRF 〉={|+2, N − 2〉, |+1, N − 1〉,
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FIG. 5.1: Illustration of intramanifold hyperfine transitions within F+ = 2. An ex-
ternal oscillating magnetic field at angular frequency ωRF drives transitions with Rabi
frequencies Ω[abcd] between near-resonant DC Zeeman states. We label the detuning δ
between applied frequency ωRF and the lowest atomic transition ω0, as well as ∆[012],
the difference between multiples of ω0 and atomic state energies (over ~).

|0, N〉, |−1, N + 1〉, |−2, N + 2〉}.

The Hamiltonian for the dressed atom system is:

Htot

~
|ψ〉 =



−2δ + ∆2 Ωa/2 0 0 0

Ω∗a/2 −δ + ∆1 Ωb/2 0 0

0 Ω∗b/2 ∆0 Ωc/2 0

0 0 Ω∗c/2 δ Ωd/2

0 0 0 Ω∗d/2 2δ





|+2, N − 2〉

|+1, N − 1〉

|0, N〉

|−1, N + 1〉

|−2, N + 2〉


(5.1)

We have redefined atomic energy levels in relation to the energies of the two lowest

atomic levels: ~ω0 ≡ E-1 − E-2 ≡ hf0. The detuning is defined relative to this

transition, δ ≡ ωRF − ω0, and the other state energies are re-defined in relation to

multiples of this value using {∆0 = (E0 −E−2)/~− 2ω0, ∆1 = (E1 −E−2)/~− 3ω0,

and ∆2 = (E2−E−2)/~− 4ω0}, shown in Fig. 5.1. Atoms can only change one unit

of angular momentum at a time, so the five-level ‘ladder’ can be viewed as a series

of two-level interactions.

Since allowed transitions within this manifold are only σ+ polarized (that is,

energy increases for an increase in angular momentum mF ), then the Rabi frequency
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given by Ωeg = 〈e|−~µ· ~BAC |g〉 can be simplified into Ωeg = −µBgs
2~2 〈e|S+B− |g〉, where

the subscripts ± denote circular polarization (B± = Bx ± iBy, S± = Sx ± iSy) with

respect toBDC ẑ. We define a common factor, the ‘Rabi strength’ Ω0/2π = µB|B±|/h

that we report as
√

1
8
Ω0 in this chapter.

While the Rabi frequencies are unique from one another, we can approximate

them using Clebsch-Gordan coefficients assuming a ladder-like distribution, which

remains the case for low BDC values. While the general case is given in Chap. 3, for

F+ = 2 transitions, we have 〈2,m|S+ |2,m′〉 =
~
√

(2+m)(2−m′)
4

δm,m′+1 yielding values

of
√

2
8
Ω0 ≈ Ωa ≈ Ωd, and

√
3
8
Ω0 ≈ Ωb ≈ Ωc. In this chapter, the common factor√

1
8

is still in the reported strength.

Diagonalizing this Hamiltonian in Eq. 5.1 across a range of photon frequencies

(ωRF or δ) gives the frequency-dependent energy curves shown in Figs. 5.2 and 5.4,

as well as the eigenvectors, which are combinations of the dressed states, illustrated

in Fig. 3.4. We refer to the five resultant dressed state-comprised eigenvectors in

order from highest to lowest energy as {|++〉 , |+〉 , |0〉 , |−〉 , |−−〉}.

The origin of the ACZ force is a gradient in the ACZ energy: ~FACZ = −∇EACZ .

In our experiment, the force arises from the gradient of the magnetic near field from

atom chip traces above the atoms. In an idealized form, a point-like wire current

source above the atoms will have a circularly shaped magnetic near field which

falls off like 1
r

with the distance r away from the wire. Far enough away, this field

approximates to a horizontal linearly polarized alternating BAC field with a vertical

linear gradient, shown in Fig. 5.3. To calculate this force, we diagonalize matrix 5.1

at two different values of Ω0(~r) with a fixed spatial separation, simulating a known

gradient of ∆E
∆r

, and producing a force value that we normalize by the gravitational

force mg. These calculations are shown as dashed curves with the right axes in

Figs. 5.6 and 5.7. These force curves are integrated over duration including sweeps

to generate the solid curves (and error) with the left axes in the same figures.
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for the five eigenstates, the extra energy above zero BRF field. The case given is a

near-degenerate ladder matching experimental conditions, calculated with
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3.7× 105 Hz.
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FIG. 5.3: Basic experimental setup, not to scale. Atoms are held in an optical dipole
trap (a near-perpendicular x̂-oriented beam is omitted for clarity) which is aligned below
the atom chip trace carrying an RF current, IAC . BDC is oriented in the ẑ direction,
providing a quantization axis for BAC , whose field lines curl around IAC . Locally, these
are primarily in the x̂ direction, which decomposes into BAC+ and BAC− fields. The
gradient in BAC creates a force in the ±ŷ direction. The DC Stern-Gerlach coil is shown
with its high-gradient field, BSG. It separates atom states along the x̂ direction, just
prior to imaging.

5.2 Experiment

Atoms are initially cooled in the |F+ = 2,mF = 2〉 state of Rubidium-87 in

a micromagnetic chip trap, then loaded into an optical dipole trap (ODT) with

a population of about 300,000 thermal atoms at roughly 350 nK. The ODT has

measured trapping frequencies of ω(x,y,z) = 2π×(184, 164, 28) Hz and a calculated

trap depth of 23 µK [44]. The ODT is positioned ∼100 µm below a 50 µm wide RF

current-carrying atom chip trace (see Fig. 5.3). To prepare atoms in different mF

states, we raise the current in a pair of coils with a magnetic field parallel to the

primary dipole trap orientation, to BDC = 51.75 G, sufficiently breaking degenerate

DC Zeeman splitting (see Fig. 5.4). A frequency sweeping RF source follows the

|++〉 state from negative detuning to perform adiabatic rapid passage (ARP) on
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FIG. 5.4: Calculations of the AC Zeeman energy at high BDC = 51.75 G, calculated

using
√

1
8Ω0/2π ≈ 117 kHz, matching the population ARP sweep on |++〉 (blue) to any

dressed state (black). This plot also illustrates the small and uneven energy gaps for the
lower curves, and the low-field seeking of the |+〉 state (cyan) at low field.

the atoms between the initial |F+ = 2,mF = +2〉 state into any mF states. To reach

the (+1, 0, -1, -2) state, we ramp the frequency from 25 MHz to (35.8, 36.2, 36.6,

37.0) MHz, respectively, for 100 ms before ramping off the RF power and lowering

BDC to 11.98 G for the push/pull experiment. This sequence is illustrated in Fig. 5.5.

Crucial in this theory is the adiabatic, phase continuous sweeping (or ramping)

of the RF frequency. Since sweeps through an avoided level crossing are prone to

non-adiabatic [64] transitions ( i.e. Landau-Zener transitions), we must be careful

regarding low power and fast sweeps, where we observe these undesired transitions.

Sweeps must begin from far off-resonance, compared to the Rabi frequency, so that

the bare mF states map onto the eigenstates. AC Zeeman states near resonance

employ multiple dressed states in superpositions, but we always sweep frequency

back off-resonance before measurement in the mF basis. A single triggered, fast

sweeping RF source based on the AD9910 Direct Digital Synthesizer (DDS) is used
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FIG. 5.5: Timing diagram for the main push/pull experiment. 1: At high BDC field,
fRF is turned on far below resonance at 25 MHz. 2: An ARP sweep brings the population
to our choice of mF state (see Fig. 5.4). 3: Power is ramped off. 4: With power off,
frequency is brought to fRF ± 5 MHZ, and BDC is dropped to the working resonance
f0. 5: Power ramped on. 6: Sweep frequency to resonance. 7: Hold at fRF . 8: Sweep
frequency out from resonance. 9: Time of flight (tof ) with minimized BDC . 10: Imaging.

here, mixed down with a 100 MHz reference.

Early in the experimental process, we realized that sweeps beginning below half

of the resonant frequency (roughly 4 MHz) would produce an enhanced force for the

atoms during preliminary tests. We suspected that a harmonic of the frequency was

performing a weak additive force, so we used a mixer along with a reference local

oscillator at 100 MHz to mix down to the desired frequency. This mixing diminished

the first harmonic by about -30 dB, rendering it negligible. We did not test it, but

using constant RF frequency and an adiabatically changing BDC should achieve the

same effect.

The push/pull impulse measurements follow the procedure shown in Fig. 5.5,

with data plotted in Figs. 5.6 and 5.7. After the population sweep, atoms in the

chosen initial mF state are held in the ODT for ≈ 100 ms while BDC is held near

12 G. This hold lets any residual motion from changing theBDC gradient (the subject

of Sec. 5.5.1) to dissipate. Next, the RF power is turned on to full power far from

resonance, at either ±5 MHz from the experimental ‘hold’ frequency fRF = ωRF/2π.

The ODT power is turned off, allowing atoms to fall under gravity. As soon as this
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FIG. 5.6: Comparison of theory and data for the intra-manifold ACZ force, or push/pull
experiment. Initial frequency is below resonance in this figure. The left axes plot data
for the change in position after tof , relative to baseline ‘no push’ measurements. Each
color represents a different AC Zeeman state, which can be reached from either negative
or positive initial detuning (here or Fig. 5.7, respectively) from a different dressed state
(black). Two dressed states are labeled on the populating side by their far off-resonance
projections, intermediate curves are inferred sequentially in the dressed state basis of
Eq. 5.1. Error bars in the theory curves are 1-σ deviations in measurements of Ω0 and
∇Ω, dominated by the uncertainty in ∇Ω measurement (see Sec. 5.5). Each data point
is the weighted arithmetic mean of three data points, with the standard error of the
weighted mean given as the error bars.
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FIG. 5.7: Continuation of Fig. 5.6, separated for clarity. Initial frequency is above
resonance in this figure.
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happens, the frequency is swept in for tsweep =50 µs to the ‘hold’ frequency (fRF ),

held for thold =500 µs, then swept back to fRF±5 MHz for tsweep =50 µs to project

back into initial mF population. This force impulse during the ‘hold’ time changes

the momentum of the atom cloud, to first order as ~FACZ · thold = ∆~p, where the

magnitude of the force depends on detuning, RF power, and initial state.

Atoms with altered momentum fall for tof = 16.55 ms during a time-of-flight

drop, and are compared to the same atom state which did not receive an ACZ

impulse. The experimental height displacement data are shown on the left axis of

Figs. 5.6 and 5.7. 1

The theory curves to compare against are two-fold. One set, the five dot-dashed

lines, represents the simple ACZ force impulse height displacement:

∆y =
∆~p

m
· tof =

~FACZ
m
· thold · tof (5.2)

These curves are measured on the right axis in terms of mg, the force due to gravity.

The solid lines and corresponding 1-σ error in position on the left axis are integrated

over the non-zero momentum during the initial and final sweeps, as well as the less

than 1% contribution from variations in RF power as a function of time, frequency,

and height drop during the impulse. These integrated force curves are plotted on the

left axis as the difference between the final measured position and the non-impulse

case. Some entire data sets appear offset vertically from the theory curves, possibly

due to systematic errors in reference position measurement corresponding to the set,

although an estimate of this systematic error is included in the error bars.

We measured all five AC Zeeman curves, populating from either detuning side

1Reference ‘no push’ position values were taken before each experimental set, except for the
mF=-1 sets from above and below, the mF =0 from below, and one of three mF =0 from above
sets. We had mistakenly run the wrong experimental sequence for these reference images. These
positions were linearly interpolated from the complete set of reference positions for the other mF

states and are calculated with the fit error added.
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in Figs. 5.6 and 5.7. We see that mF 6= 0 states are weak-field or high-field seeking

depending on the initial detuning, and the mF = 0 remains largely unperturbed but

slightly high-field seeking.

We observe forces approaching 3 mg for 11.36 dBm ≈ 13.6 mW of power sent to

the atom chip. This result is a significant improvement over a previous experiment,

which achieved about the same magnitude of force using 3.3 W of 6.8 GHz power

on the intermanifold (F+ = 2 to F− = 1) transition [44]. We attribute this mainly

to the impedance characteristics of the atom chip. Since the current amplitude

generates force, and P = I2Z, then the frequency dependence of the impedance,

Z(f) between a few MHz and a few GHz, determines the effectiveness of the force

to power ratio. Optimization of GHz power transfer via microstrips, co-planar

waveguides, and other techniques is key to the advancement of this technology as a

neutral atom trapping mechanism.

5.3 AC Stern-Gerlach

To demonstrate simply the power of this technique to turn spin states into

high- or low-field seekers, we separate mF states vertically using the ACZ force,

and horizontally with a traditional DC Stern-Gerlach magnetic gradient. The result

is shown in Fig. 5.8, and the process is illustrated with a timing diagram in Fig. 5.9.

To populate all five states, we perform a resonant Rabi pulse for much longer (1 ms)

than the coherence time (about 10 µs). Low trap lifetimes for the mF = ±1 and 0

states leave them with a lower population number than the mF = ±2 states. With

all mF states populated (unevenly), we perform the sweeping push/pull procedure

from f0 + 5 or f0 − 5 MHz into resonance at f0 = 8.375 MHz, to maximize the

ACZ force. Sweeping frequency allows the mF states to transform into the ACZ

eigenstates, each seeking high- or low-field, to varying degrees. An atom whose
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energy is raised with the ACZ effect will seek the lower field away from the atom chip,

while atoms whose energy is lowered by the ACZ effect will seek a higher field toward

the atom chip. During the hold time impulse, the momentum of atoms changes,

turning into a position displacement after a time of flight. Ramping frequency from

higher or lower initial frequency, the direction of this impulse changes (except for

the |0〉 state). Sweeping back off-resonance projects ACZ states back into pure mF

states. In essence, we repeat the central point at fRF = 8.375 MHz from the plot in

Figs. 5.6 and 5.7 for five states simultaneously.

After this impulse, we apply a horizontal DC Stern-Gerlach pulse, comprised

of a DC magnetic field gradient induced by the current in a single coil. Atoms in

F+ = 2 with positive (negative) mF numbers seek lower (higher) field at low BDC

values, thus always react the same to a BDC gradient.

As shown in Fig. 5.8, non-zero mF atom states are pushed or pulled by the AC

Zeeman effect depending on the ACZ state and the sign of initial frequency detuning

(here, -5 and +5 MHz), where they are pushed or pulled by the DC Stern-Gerlach

effect depending only on their mF state. We call this use of the AC Zeeman force to

separate atoms by spin state the ‘AC Stern-Gerlach’ effect, although it was initially

called the ‘transverse Stern-Gerlach’ in the literature [38]. Separation of spin state

by this effect has been demonstrated on a number of different quantum platforms

[69].

5.4 Time Evolution of States

Since the intra-manifold AC Zeeman effect requires interaction between multiple

dressed states (in our case, five) at near-degenerate energies, we explore the tendency

of these states to mix over time. Ideally, we would see no mixing between states for

long hold times at the force peaks for when trapping, although we will find this is not
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FIG. 5.8: An example of sequential AC and DC Stern-Gerlach separation. All five mF

projections are populated with atoms, which are pushed and pulled vertically by the spin-
dependent ACZ force, then separated horizontally by the DC Stern-Gerlach effect. False
color optical density plots here are composite sums of more than a dozen experimental
images each.
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FIG. 5.9: Timing diagram for the AC Stern-Gerlach experiment. 1: A long resonant
Rabi pulse scrambles population into each mF state. 2: With power off, fRF is moved
red or blue of resonance. 3: RF power ramped on. 4: Frequency sweeps in to resonance,
from 5 MHz red or blue. 5: Frequency held on resonance. 6: Frequency sweeps out from
resonance, to 5 MHz red or blue. 7: Atoms fall with DC Stern-Gerlach on, and BDC
minimized. 8: Atoms fall without DC Stern-Gerlach. 9: Imaging. 10: Experiment ends.
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the case. To test this state mixing, we populate either ACZ state |++〉 or |−−〉, by

beginning at positive or negative detuning using one of the mF = ±2 states. While

holding atoms in the ODT, we then sweep to near resonance, hold for some time,

and sweep the frequency away from resonance to count atoms projected back into

bare mF states. Increasing populations in states other than the initial one indicate

mixing, shown in some sample mixing data in Fig. 5.10. The RF power used in this

section is significantly lower (≈ −10 dB) than used for the force measurements.

Since this behavior is not strictly exponential or linear, our measure of choice

here is Tcross, the time when population in the initial state Pstart equals the summed

population in all other states: Pother =
∑

i 6=start
Pi. Equivalently, Tcross is the time

it takes for the initial state to make up only half the total population. We should

note that the hold time in the ODT is not equal for all states. The mF = +2

and −2 states have an e−1 time constant of roughly 7 and 5 seconds respectively,

while the mF = 1, 0,−1 states have time constants just below 1 second, likely due

to the ability of non-stretch states to have inelastic collisions. Since the primary

contribution to the total Pother is the adjacent state (mF = ±1), the non-stretch

states’ relatively short lifetimes will diminish the population more in Pother than in

Pstart. The difference in state lifetimes will artificially increase Tcross compared to

its value with full retention of the other states.

A sample of the time dependence of state population data is given in Fig. 5.10.

Total atom number decreases exponentially over this test, measurements are always

of population ratios, and precision decreases with low total population number. We

perform a fit of Pstart and Pother over a hand-picked range around the crossing point,

which gives Tcross and its error. Fits are linear in population ratio and log(time),

implying this delayed decay is exponential.
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FIG. 5.10: Three examples of the time dependence of fractional population data, in-
cluding fits for determining Tcross, using 0.66 mW (-1.83 dBm). Selected data is slight
negative detuning (left), slight positive detuning (middle), and farther positive detuning
(left), and correspond to three points in Fig. 5.12. Each color (×) represents a different
mF state, and black (◦) represents the sum of all non-initial population ratios. Fits used
to obtain Tcross values are shown in red.
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FIG. 5.11: Timing diagram for the time dependence of state population experiment. 1:
A frequency sweep populates either mF = ±2 from |++〉 at the 52 G resonance. 2: The
ARP sweep power ramps off. 3: Frequency and BDC both drop to the 12 G resonance.
4: RF power ramps back on. 5: Frequency sweep to the hold frequency from either red
or blue detuning. 6: A variable hold time, while atoms remain trapped in the ODT.
7: Frequency sweep back off-resonance to project AC Zeeman states to mF states. 8:
Atoms fall and separate due to DC Stern-Gerlach field. 9: Imaging.
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5.4.1 Detuning Effects

We find that the detuning of the applied RF has a major effect on state mixing.

Operating far from resonance will result in longer times to mix states (Tcross). The

shortest Tcross times are found very close to atomic resonances, where the highest

force is found, so creating a strong AC Zeeman trap without significant state mixing

requires balancing these two factors via selection of detuning. We suspect that

resonant losses are due in part to inelastic collisions of population components in

the non-stretch states (mF = −1, 0, 1), similar to the ODT’s various lifetimes for

the mF states.

Additionally, we argue that one contribution to dressed state mixing could be

akin to the Landau-Zener effect, but with periodic or noisy non-adiabatic energy

sweeping, rather than a linear in time sweep. The current source providing the

tunable BDC field has a few mA of noise at 60 Hz, which maps to roughly 15 kHz

RMS jitter in the resonant frequency of the atoms. By holding frequency constant

but moving the atomic resonance, the atoms can “jump curves” and transition

between states. We can see the relevant atomic transitions clearly in Fig. 5.4,

whereas Fig. 5.2 represents the correct resonance and non-degeneracy matching the

experiment. At roughly
√

1
8
Ω0 = 83 kHz, comparing the |−−〉 state, which has

only one level crossing, with the |++〉 state, with four crossings, at most 60 kHz

apart, we see a much wider central low Tcross region where crossings are spread

roughly 60 kHz more than the single-resonance |−−〉 case. This spread is shown

in Fig. 5.12, suggesting that the proximity to bare level crossings (low detuning)

is a major contributing factor to state mixing times whether or not Landau-Zener

transitions are the reason. When |δ|/2π >100 kHz, Tcross for both the |++〉 and

|−−〉 states is observed greater than 3 seconds, the longest time we measured.

We expect the Rabi gradient, which was helpful for forces, to flop atoms at a
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FIG. 5.12: Detuning dependence of Tcross using 0.66 mW (-1.83 dBm). Pink and blue
curves represent |−−〉 and |++〉 states respectively, where up/down triangles indicate
initial state, ±2. Both initial states from both detuning directions are shown. Data points
are slightly offset right and left of the measured value for clarity. Actual detunings shown
are [(-75), -50, -30, -10, 0, 10, 30, 50, (75)] kHz, from 8.375 MHz. Data further detuned
have times longer than the 3 seconds reliably measured. Large error bars which reach
negative values are omitted.
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FIG. 5.13: Tcross (ms) vs. scaled values of
√

1
8Ω0 in kHz. All points come from Tcross

fits for resonant holds of |++〉, and errors in × symbols come from these fits. Errors
in � points are hand-picked as bounds on Pother > or < Pstart from viewing the data,
which had a good fit but a large error given a small time sample.

different rate over the vertical extent of the cloud, maximizing at resonance. This

gradient can cause decoherence as atoms sample the spatial extent of the cloud over

long hold times, population flopping with larger amplitudes near resonance, and

rates dependent on position. A colder atomic population should sample less of the

field, mitigating this effect. We did not simulate this pathway, but it is a likely cause

for some of unfortunate state mixing observed in the system.
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5.4.2 Power Effects

Another major contributing factor to the mixing rate of dressed states is their

energy separation. On resonance, the energy separation is proportional to the Rabi

frequency, which depends on applied power. With more power and thus more energy

separation, atoms are less prone to state transitions. We study the on-resonance

behavior of the low-field seeking |++〉 state, a prime candidate for trapping, at six

powers spanning 10 dB. We calculate the Rabi frequency for measured powers using

square-root power scaling from measured quantities.

We find that higher powers provide longer times remaining in the initial state,

and low powers are more prone to mixing. For the power scales tested on resonance,

a rule of thumb is that for each 10 kHz gain in Rabi frequency, one gains 83 ms of

time before Tcross.

5.4.3 Beyond Landau-Zener

If the state mixing were purely from the Landau-Zener non-adiabatic crossing

effect, we suspect the time behavior of the population ratios would be different from

that observed. Both the current-generated field and environmental field exhibit

60 Hz noise in BDC from US utility power, one might expect changes in population

to occur in 1
60Hz

≈ 16.7 ms steps (depending also on relative experimental timing), or

to in general have a constant rate not dependent on population over long times. The

behavior observed is that atoms remain in the initial state for some time (typically

20-200 ms depending on parameters) before transitioning into an exponential decay,

populating successive adjacent states, approaching an equal population in all states

(on resonance case). We do not have a theoretical model for the cause of this

behavior. However, the initial plateau and exponential change agree with aspects

observed previously on state mixing in inter-manifold AC Zeeman state mixing [44].
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One potential difference is the observed approach to equal population, where the

inter-manifold mixing approached different ratio plateaus, depending on detuning.

We cannot claim that the ratios always approach equal values since the time to

reach static populations off-resonance are much longer than the mF = {−1/0/1}

trap lifetimes, so we cannot measure this expectation accurately.

5.4.4 Outlook for Trapping

These mixing experiments were performed at significantly lower power than the

push-pull experiment (roughly -10dB or 30% of Ω0). For experimental conditions

akin to ours, one can expect at least hundreds of milliseconds before state mixing

takes effect on resonance at full power. Additionally, one could move, say 100

kHz away from resonance, still retaining more than half the force, but perform

significantly better with state mixing, allowing state fidelity times better than a few

seconds in theory. This behavior allows a wide range of parameters for state-specific

trapping, for which state mixing and trap depth both favor increased power.

5.5 Rabi and Rabi Gradient

In order to predict the ACZ force magnitude and detuning dependence in

Figs. 5.6 and 5.7, we require an accurate measure of both the Rabi frequency Ω0 and

its local gradient ∇Ω0. This section briefly recaps relevant material from Chap. 4.

We measure Ω0 using resonant RF (8.375 MHz, nominal 12 G BDC) applied to

atoms held in the ODT. The Rabi broadening of ≈ 400 kHz covers the slight spread

of resonances (≈ 60 kHz), but our numerical fitting model includes the detuning of

each particular transition. Atoms initially in the mF = +2 state flop sequentially

through partial populations in the mF = {+1, 0, − 1} states before fully popu-

lating the mF = −2 state, then the order reverses and repeats. The decoherence
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FIG. 5.14: An example of Rabi flopping data, where the title gives the
√

1
8Ω0 fit value.

The ratio is determined by individual state population, divided by the sum of all five state
populations. Colors for the (+2, +1, 0, -1, -2) mF states are (blue, cyan, green, magenta,
red). While the experimental data decoheres, the theory curve does not account for this.
Free parameters are the Rabi frequency, initial time delay, and initial population ratio.
Atoms had an initial wave function of (85, 15)% in the (+2, +1) mF state.

of states means that only 4-6 flopping periods are observable. Images are taken in

randomized order for every 0.1 µs out to 14 µs. After the Rabi pulse, atoms are

dropped by turning off the ODT and then separated by mF state horizontally by a

9 ms Stern-Gerlach pulse in a single current coil. Atoms in each mF are counted,

and the collected data is a least-squares fit to a time-evolved Hamiltonian. Since

the mF = ±2 states give the clearest signal, we average only these two fits to resolve

a Rabi frequency for each set.

To measure at different positions, the power in the ODT is lowered to about

60%, letting the atoms sag roughly ∆y = 7 µm under gravity while remaining in the

trap. Measuring the Rabi frequency allows for a linear fit between two points (or

multiple readings at each point) to get the local∇Ω0, shown in Fig. 5.15 and detailed

in Sec. 4.2.4. In theory, Rabi field has a spatial 1
r

character (distance r from a thin

wire), and its gradient has a − 1
r2

character, which are useful for envelope calculations

of effective chip current from measurements of Ω0. In practice, only a local linear
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8Ω0 (y axis) at different positions

(x axis). Exact values are given in Tab. 4.1. Blue/upward triangles were taken at full
RF power, and red/downward triangles were taken at 1.34 dB lower RF power and

scaled up by
√

101.34/10. Error bars are 1-σ error. The fit here gives ∇
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)
=

3.32(55) kHz/µm. This uncertainty dominates the 1-σ shading in Fig. 5.6 and 5.7.

approximation is necessary.

Rabi gradient measurements were taken concurrently with the push/pull data

sets but did not give precise results. After refining the gradient measuring process to

the one described above, accurate ∇Ω measurements were scaled to the Ω0 measure-

ments taken alongside the push/pull data. For the same RF power, the value of ∇Ω
Ω

should be constant, so we can scale the later Ωl to the original Ω0 via ∇Ω0 = Ω0

Ωl
∇Ωl.

5.5.1 Background BDC Gradient

When testing the AC Zeeman force, we measure atom cloud displacement after a

known impulse and time-of-flight. Initial results showed some vertical displacement

effect based on mF level in the absence of an AC Zeeman force as if some vertical

Stern-Gerlach gradient was affecting the free fall. I performed a study of this in

August 2018, comparing observed ballistic falls in mF = 2, 0,−2 levels, at different

nominal values of background BDC field, compared to expected gravitational falls.
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This effect would interfere with AC Zeeman force measurements, which are based

on vertical displacements of each mF state. We find a vertical gradient per applied

BDC field value of 53.34 (mG/cm)/G, or 141.5 (mG/cm)/Amp in the generating

coils. This gradient moves mF = −2 atoms up against gravity, pushing mF = +2

down with gravity, and more in that direction for a stronger field. This gradient

suggests a radial minimum from the generating coils centered below the atom chip.

To accommodate this, we measure displacements with respect to the same mF ’s

position in unforced free fall and lower the field as much as possible during the time

of flight while maintaining a weak quantization axis for imaging.

Additionally, we see an axial minimum in this BDC field play a role in end-

capping the AC Zeeman trap in Chap. 7 and the ‘main’ ODT trap. A spatially-

varying BDC would alter atomic resonance as well, but this is a minor effect com-

pared to the DC Zeeman gradient/Stern-Gerlach force.

5.6 Conclusion

We have demonstrated the ability to generate a force for neutral atoms using RF

near field gradients at frequencies near intra-hyperfine manifold energy splittings.

Force measurements agree with theoretical predictions based on the avoided level

crossings of quantum spin states dressed with near-resonant photons. All non-zero

mF states can become a high- or low- field seeker, depending on initial frequency

detuning. Since the intra-manifold transitions are exclusively sensitive to σ+ or σ−,

using multiple wires at different phases should allow for a local minimum in B+ or

B− field, and thus the ACZ energy, allowing for spin-specific trapping of neutral

atoms using this force. Looking toward trapping, we find that the time until states

mix depends strongly on power and detuning, where a slight detuning and high

power should allow atoms to remain longer in the initial state.
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CHAPTER 6

Trap Theory

In the previous chapter, we demonstrated that atoms could be made into high-

or low-field-seeking states with respect to a single-wire AC Zeeman potential, a

monotonic vertical gradient capable of holding atoms against gravity with FACZ >

mg. However, Earnshaw’s theorem states that we cannot construct a local static

magnetic maximum in free space, which also applies to our AC near fields, so we

seek to generate a local minimum that can trap low-field-seeking AC Zeeman states.

We restrict ourselves to parallel RF currents in the ẑ-direction, as on our atom chip,

to generate B±(x, y) fields which have a local minimum, e.g., where the field from

two different wires cancel each other in a particular way. Having RF signals on

multiple wires introduces the relative phase φ as a crucial parameter for controlling

the generated field.

In this chapter, we give a pedagogical explanation in Sec. 6.1, of our trapping

approach using a simple two-wire case. We show some simulations in Secs. 6.2

and investigate a local linear region in Sec. 6.2.1. We briefly discuss the effect of

detuning on trap profile and population in Sec. 6.3. We discuss the location of a trap

in Sec. 6.4, focusing on the two-wire and two-microstrip cases in Sec. 6.4.1 and 6.4.2,
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FIG. 6.1: Pedagogical two-wire trap illustration. (a) A pedagogical explanation of the
circular polarization of the magnetic near field when the right-hand wire is phase-delayed
by 90◦ = π/2. Two locations are seen to have pure circular polarization, where the
opposite polarization component has a minimum. (b,c) Simulated contours of log10(B±)
with finite-sized wires matching the experiment. The B− field in (b) exhibits a local
minimum below the chip surface, which can trap atoms in the F+ = 2 manifold.

respectively. The ‘microstrip’ version includes a ground plane and image currents,

which fundamentally changes trap behavior. In Sec. 6.4.3 and 6.4.4 we discuss

location of a trap in the three-wire and three-microstrip cases. Then, we move on to

discuss a few exotic traps which have appeared in our simulations: a ‘donut’ trap for

the medium-field seeking |+〉 state in Sec. 6.5, and a pyramidal trap with a diagonal

quantizing field in Sec. 6.6. We end with a summary in Sec. 6.8

6.1 Pedagogical Explanation

Using the schematic diagram of Fig. 6.1(a), I will describe a two-wire trap, the

same one as we demonstrate in Chap. 7, and analyzed more generally in Sec. 6.4.1.

By construction, we have two thin wires (identified with actual chip wires, called ‘U’

and ‘Z’) separated by a distance 2d = 100 µm center-to-center. Each wire carries

equal current amplitude and RF frequency, but the two currents have a relative

phase difference, defined as the amount the right (x > 0) U-wire current precedes
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the Z-wire φUZ = φU − φZ . We set φUZ = −90◦, so that the Z wire precedes by a

quarter phase, as cos(ωRF t) to sin(ωRF t), shown in Fig. 6.1. If we look at each wire’s

right-hand-rule contribution to the local magnetic field at positions y = ±d, x = 0

(or generally, y = ± tan(φUZ/2)), we find pure circular components as the local

magnetic B vector evolves in time. As indicated on the axes, the purple vector

rotates over a cycle from blue→red→anti-blue→anti-red, and so on. This rotating

vector is purely B+ at y = −d, and purely B− at y = d, notably different circular

directions at either location. This pure circular polarization in either B± implies no

component in the opposite B∓ field at that specific location. This behavior generates

the local minimum we were seeking: Moving away from this position generally gives

elliptical polarization containing both polarizations, but atoms only respond to one

of these polarizations, as discussed in Chap. 3. An equivalent statement about the

zeros in B± is that at these locations the local magnetic oscillations along x̂ and ŷ

have phase difference ∆φxy = φx−φy equal to ±π/2 and their amplitudes are equal:

|Bx| = |By|.

A more realistic description using finite-sized wires is shown in Fig. 6.1(b,c)

which shows the logarithmic (log10) contour maps of the B± field strength near

the wires. In Fig. 6.1(b) there is a local minimum in B− below the chip, and in

Fig. 6.1(c) there is a minimum in B+ within the chip substrate.

6.2 AC Zeeman Trap Simulation

In order to calculate the B± near fields and the resultant AC Zeeman potential,

we conduct numerical simulations across a finite square grid of sample points in the

manner described in this section. We invoke our currents (thin wires or finite-sized),

then calculate over an area of (x, y) the quasi-static (Biot-Savart law) Bx and By

components that those currents generate, including the complex phase information
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FIG. 6.2: Simulated trapping and anti-trapping energy surfaces for all RF AC Zeeman
states, using φUZ = +90◦ for F+ = 2 (left) and −90◦ for F− = 1 (right). Simulations use
IA = IB = 500 mA amplitude in two 50 µm×4 µm wires using the Silvester simulation
method (Chap. 8), separated 100 µm center-to-center. Applied frequency fRF in this
simulation is 21 MHz (δ ≈ 1 MHz) for BDC = 28.58, leading to nearly 1 MHz separation
of potential surfaces at the B± field zero. Black contour lines mark each 10 µK.
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FIG. 6.3: Top: Screenshot of an AC Zeeman trap simulation GUI, matching the ped-
agogical example but reversing vertical orientation, so that the chip is at the bottom of
this simulation (y still measures distance to the chip surface). The EACZ trapping po-
tential for |++〉 is shown on the largest (x, y) axes over real space µm, with value plotted
by color, converted to temperature using T = EACZ/kB , with 10 µK color grades and a
cutoff at 500 µK. Current settings in the top right corner (green box) generate Bx, By,
plotted in two bottom middle graphs. Their quadrature total is shown in the bottom
left corner, and the fields of interest, B± = Bx± iBy are two plots in the top left corner.
Geometry and AC skin settings are entered with the right middle panel, and plotting
options in the bottom right panel. Bottom: The GUI can also fit trap bottom curvature
to get average trap frequencies, shown for a slight detuning δ ≈ 1 MHz. Accurate trap
depths require calculating the saddle-point beyond the trap (top of this figure), simula-
tions which are zoomed in on the trap or measure inside false trace minima are incorrect,
and this value is crossed out.
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FIG. 6.4: Simulations of |++〉 in a three-trace trap, where the middle wire is 180◦

out-of-phase on the top image, and 210◦ for the bottom image. Note for the top case,
the total B field also has its minimum at the ACZ trap location. In the bottom case,
the B± move differentially sideways, as indicated later, but only one contributes to the
RF AC Zeeman energy.
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from the currents. Next, we calculate B± = Bx ± iBy, which generates Ω0 =

µB|B±|/~, and we calculate the AC Zeeman energy over each point in space, from

the Ω0(x, y) coupling at each point, but with uniform detuning δ and quantizing

field BDC . Sample trapping (and anti-trapping) potential surfaces are shown in

Fig. 6.2, with 1 MHz detuning. At the trap bottom where Ω0 = 0, the detuning

(1 MHz× h
kB
≈ 48 µK) represents the primary energy separations in AC Zeeman

energy. Note that the generating phase is flipped by π between the two simulations

(F+ = 2 on the left, F− = 1 on the right) so the minima of B± are in the same

location below the chip.

I have made a graphical user interface (GUI) in MATLAB, where a user can

input various currents, phases, and geometries to rapidly test different trapping

ideas, gauge power requirements, and look for different methods of trapping by

playing around with the software. This GUI performs the procedure just described:

Current traces with accurate AC skin current distributions from Chap. 8 (but not

proximity effect) generate Bx(x, y) and By(x, y), which make B±(x, y) (which are

different but not independent), which then generate AC Zeeman potentials, given a

selected state or transition.

We show an example of this GUI at work with a standard two-trace trap (a

phase-shift away from the trap demonstrated in Chap. 7) with an optional parabolic

trap bottom fit, shown in Fig. 6.3. We show a three-wire trap in Fig. 6.4, along with

a slightly phase-modified version illustrating a case given in Sec. 6.4.3. The caption

of Fig. 6.3 gives a breakdown of the user-side information and layout of the GUI.

This GUI is contained in the GitHub repository,1 including AC skin calculation

and AC Zeeman Hamiltonian diagonalization.

1https://https://github.com/drewrotunno/ThesisCode
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6.2.1 Finding Linear Gradients

After generating the AC Zeeman potential via simulation, we can examine

its outputs for other useful features. One such feature is a linear region between

upward and downward curvature, illustrated in Fig. 6.5 using a microwave two wire

trap, with 250 mA amplitude in each wire, −100◦ phase difference, and ≈ +1 MHz

detuning from the |2, 2〉 ↔ |1, 1〉 transition. While the vertical potential is locally

linear, the horizontal retains parabolic local curvature here. The location of this

linear region moves farther away from the chip as detuning increases.

While a simple gradient can shift states differentially, it would generally im-

print its curvature on to the atom cloud. Using a linear gradient has the effect of

simple uniform translation of a parabolic trap, a useful feature for interferometer

arm separation. A larger region would allow farther separation, and we would like

this to be larger than the trapped atom cloud size as well. We see a rather linear

region only over a few µm, shown in Fig. 6.5.

6.3 Effect of Detuning

While the strength of the B± field generates the off-diagonal Ω coupling in

the Hamiltonian (Eq. A.10), the detuning remains on the diagonal, comprising the

entire energy separation where B± = 0. We illustrate detuning as a moderating

effect on EACZ in Fig. 6.6 for a microwave interaction, where δ is well-defined.

Traps with zero detuning have a linear gradient, which flattens to parabolas as the

detuning increases. Increased detuning also decreases trap depth, seen as the energy

maximum on the right of Fig. 6.6.

Detuning, as analyzed in Chap. 3 and Fig. 3.4, also controls the mF basis

population of the trapped |++〉 cloud. This state selection by detuning allows an
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FIG. 6.5: Examination of a local linear profile near the trap. Left: A vertical cross-
section of AC Zeeman potential (two wire trap, 250 mA, φUZ = −100◦, 1 MHz detuning
from the |2, 2〉 ↔ |1, 1〉 transition). Top right: comparison of the local linear gradient
(red circle, black line) with the local curvature (blue ×) over 15 µm. Bottom right:
Residuals from the fit above. We also give the normalized gradient difference ∆m/m0

where m0 is the center slope, and ∆m is the slope of the leftmost or rightmost two points
in the range given, as well as the slope across the whole range.
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FIG. 6.6: An illustration of detuning’s effect on trap frequency and depth. The trap
profile is nearly linear on resonance, flattening to harmonic bottoms with lower trap depth
with large detuning δ. The simulation uses a microwave 〈2, 2|S+ |1, 1〉 trap generated
by 0.5A in two in-phase wires in the two-microstrip configuration, separated by 100 µm
with substrate thickness 50 µm.
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experimenter to trap ‘any’ spin state as the primary population of |++〉, using RF.

Detuning also provides transition selection in the microwave case, allowing two-level

bipolar action, actually targeting any single hyperfine state.

6.4 Trap Location Theory

In this section, we investigate the trap position’s dependence on relative phases

and currents by mapping the zeros of the circularly polarized B± fields using a toy

model for the atom chip. We can write simple, pedagogical expressions for the

trap position when using simplifications like long, thin, parallel wires aligned to the

background BDC , B ∝ 1/r spatial scaling, and perfect image currents. Effects that

appear experimentally such as inductive couplings between wires, the AC skin effect,

and image proximity effects are excluded here, but are discussed in Chapter 8.

Calculations here are performed quasi-statically, where a current I = |I|eiωt+iφ

in the ẑ direction encodes its complex angle φ and its amplitude |I| into the gener-

ated magnetic field vectors (Bx, By). The layout of the wire and microstrip config-

urations is given in Fig. 6.7. The current I at (x0, y0) will generate magnetic field

components at location (x, y) given by Bx = −I µ0
2π

(y−y0)

r20
and By = I µ0

2π
(x−x0)

r20
, where

r0 =
√

(x− x0)2 + (y − y0)2 =
√

(∆x)2 + (∆y)2. These carry 1/r0 spatial scaling,

the complex I’s phase, and θ̂ vector orientation from cos(θ) = ∆x
r0

and sin(θ) = ∆y
r0

,
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with θ is the polar angle around the z-axis wire, starting from +x̂. We sum over

active currents (replacing I at (x0, y0)) at horizontal distances d to the midline: left

(IL at x0 = −d), middle (IM at x0 = 0), and right (IR at x0 = +d), all at y0 = 0

for the “wire” cases. For microstrips, we add a ground plane at y = 0 by moving

the currents to y0 = +s, the substrate thickness above the ground plane. To satisfy

the boundary conditions at the ground plane equal and opposite image currents are

added at y0 = −s.

Having calculated the complex values of Bx and By in all xy-plane positions,

we generate the circular polarized fields via B± = Bx ± iBy. Searching for zeroes

in B±, we can locate the trap in terms of a few geometric and phase parameters.

An equivalent analytic expression for finding pure or zero B± is where the local

magnetic phase relationship is given by φx− φy = ±π
2
, with |Bx| = |By| [64]. In the

subsections below we analyze traps produced by two- and three-wire and microstrip

geometries.

6.4.1 Two-wire Trap

First, we consider the two-wire trap, which does not contain the microstrip

ground plane needed for good microwave power coupling, but represents an instruc-

tive case for understanding trap behavior. Additionally, a RF trap based on this

design if demonstrated in Chap 7. In the general case, two wires are separated hori-

zontally by 2d, and the right wire precedes by some phase φRL ≡ φR−φL, with real

positive magnitude ratio to the left current, rRL ≡
∣∣∣ IRIL ∣∣∣. We find that the general

solution for zeroes in B± is:

y ± ix = ±id · 1− rRLeiφRL
1 + rRLeiφRL

(6.1)
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where the imaginary and real parts of the right-hand expression are identified as the

trap coordinates (x, y), and both signs match to select for ± polarization. Solutions

to B± = 0 are seen to be negative complex conjugates of one another, tracing the

same paths in opposite directions, with phase φRL. The two-wire trap position in

Equation 6.1 is plotted as “iso-r” curves for a cycle of phase delay φRL at various

values of current ratio rRL in Fig. 6.8. Paths that maintain phase (“iso-phase”) at

±90◦ and vary rRL are seen to trace out the dashed circle of radius d.

In the case of equal currents (rRL = 1), the trap is located at x = 0, with y

controlled by phase φRL as:

y± = ±d tan(φRL/2) (6.2)

We plot Equation 6.2 in Fig. 6.9(a), for each B± field across a cycle of phase. As

phase φRL shifts away from zero, the B+ and B− minima move vertically in opposite

directions away from x = 0. Perturbations are linear near φRL = 0◦ (i.e. y = 0),

although this is not experimentally useful due to the chip’s surface. When currents

are 180◦ out-of-phase (IR = −IL, φRL = π, rRL = 1), the traps are asymptotically far

away. The single trap is seen to return to its original position after moving through

a single cycle (2π) of phase delay.

An instructive and useful special case is φRL = ±90◦ and rRL = 1, which yields

y± = ±d for the B± field. This arrangement gives one polarization-specific trap in

a useful location y+ = +d above the chip, but leaves the other −d below the chip

surface.

When r 6= 1, the trap crosses the x-axis outside of d for φRL = π rather

than asymptoting to y → ∞, as well as crossing the x-axis between the wires for

φRL = 0. Plugging φRL = {0, π} into Equation 6.1 we see the x-axis crossings occur

at x = d · 1±rRL
1∓rRL .
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FIG. 6.8: Trap minima locations in the two-wire (left) and two-microstrip (right) models,
for d = s = 1. Currents are marked by black dots. We plot various values of rRL (labeled
connected curves) across a cycle of phase φRL, given in 15◦ increments with large dots.
The dashed curves map out trap position for φRL = ±π/2 while varying the current
balance rRL. Similarly, dotted lines map φRL = 0, π. Locations of a B+ and B− trap at
φRL = 15◦ are marked with a 4 and 5, respectively.
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6.4.2 Two-Microstrip Trap

Adding a ground plane to the two-wire case moves the in-phase trap out of

the chip substrate, usefully co-locating both B± minima outside of the chip. In

this new geometry, the single wires become microstrip transmission lines for effi-

cient microwave transmission, modeled using two mirror image currents, as seen in

Fig. 6.7(right). Additionally, more traps are formed with now four complex currents

(at x0 = ±d and y0 = ±s), causing the field to cancel in two places for both B+

and B−. We find the general expression for the (x, y) location of the trap minima

for both B±

y ± ix = ±i · d(1− rRLeiφRL)±
√

4d2rRLeiφRL + s2(1 + rRLeiφRL)2

1 + rRLeiφRL
(6.3)

where the left-hand side ± sign matches the leading right-hand side ± sign referring

to B±, while the third ± sign inside the numerator gives both solutions per field

polarization component. We plot this function in the same manner as before in

Fig. 6.8(right). By counting 15◦ dots in Fig. 6.8, or counting curves for the case

rRL = 1 in Fig. 6.9(b), each phase φRL now gives four trap locations simultaneously.

Further, the two traps of each polarization (B±) travel in opposite directions with

phase shifts. Each trap is located at y > 0 over one 2π cycle, and at y < 0 for

another 2π cycle, crossing over at y = 0 and y → ∞ (for φ = ±π). After a cycle

of 2π, the field returns to the same initial state, but if we label the two traps and

track their motion, we see that each of the two traps moves to the other’s location

in 2π, returning to their initial locations over two full cycles, i.e. 4π.

Extreme values of rRL restrict paths to just around the wires, cycling each 2π.

As before in Fig. 6.8(right), black dashed curves mark iso-phase for φRL = ±π/2,

now in two locations each. Dotted lines give the iso-phase circle marking φRL =

{0, π}, the in- and out-of-phase conditions, for s = d = 1.
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FIG. 6.9: The y-position of trap minima in the two-wire (a) and two-microstrip (b) cases,
for equal currents (rRL = 1) in units of d = s = 1.

Again, equal currents (rRL = 1) restrict the trap location to x = 0, and the

general vertical position as a function of phase difference φRL is

y± = ±d tan(φRL/2)±
√
s2 + d2 + d2tan2(φRL/2) (6.4)

where again the leading sign matches B±, and the inner sign gives two solutions.

We plot these microstrip curves for in Fig. 6.9(b), for rRL = d = s = 1.

Perturbing phase around 0◦ with IL = IR, one can separate opposite polar-

ization traps vertically from co-location, but trap frequencies will differ, and must

be compensated for in an interferometer scheme. Additionally, this phase control

scheme can co-locate one polarization’s minimum with a linear gradient or saddle-

point regions from the opposite polarization’s field.

6.4.3 Three-Wire Trap

Considering the case of three currents (adding IM at x0 = 0 to IR and IL at

x = ±d from Section 6.4.1, no images currents), we observe left-right separation

of spin polarization for phase shifts near 0◦, fundamentally changing behavior from
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the two-wire case. We restrict ourselves to the case of equal left and right currents,

in magnitude and phase, whereas we vary each of those parameters in the mid-

dle wire, with respect to the outer wires. We use: {|IL|eiφL , |IM |eiφM , |IR|eiφR} =

{1, rMeiφM , 1}, with rM = |IM |/|IL| = |IM |/|IR| = |IM |, and φL = φR = 0. The

positions of the zeroes of B± for three co-planar wires are given by:

y ± ix = ±id
√
rMeiφM√

2 + rMeiφM
(6.5)

where each B± field (identified by the left-hand ± sign) has two solutions, distin-

guished by the ± sign on the right-hand side. The trap minima are plotted for

various rM values, for a cycle of 0 ≤ φM ≤ 4π, with d = 1 in Fig. 6.10. Again,

as in the two-microstrip case in Section 6.4.2, the solutions in Equation 6.5 are 2π

periodic in φM . However, if atoms are in a given trap and the phase φM is varied

continuously, then the atoms will return to their original location after a 4π cycle

of φM , although the field looks identical over each 2π cycle.

For rM < 2, the trap positions form closed loops around the middle wire, convex

for 0 < rM < 1, growing to bulging bowling-pin shaped loops for 1 < rM < 2, as

shown in Fig. 6.10(left). At rM = 2, i.e. the standard co-planar waveguide (CPW)

configuration, a trap cannot form directly above the center trace (i.e. x = 0).

Furthermore, the trapping positions do not form a closed loop but instead demarcate

diagonal asymptotes as φM → π, limiting the CPW as a useful ACZ trapping

platform. When rM > 2, the trap positions form two loops around the outer wires.

As the phase φM is varied, the loops cross the x-axis once between the wires, and

once outside, at x = ±d
√±rM√

2±rM .

An instructive case is IL = −IM = IR, using rM = 1, φM = π, where a trap

is formed at y = d above the middle wire, and a quick mental sketch shows the

vector-wise B-field cancellation. Perturbations around φM = π introduce imaginary
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components, shiftingB± zeros left-and-right differentially (see4 and5 in Fig. 6.10),

making this scheme an interferometric spin separation candidate for use with a single

frequency.

6.4.4 Three-Microstrip Trap

We convert the three-wire scheme from Section 6.4.3 to a three-microstrip layout

by adding a ground plane and the three associated image currents. This arrangement

of currents produces four zeroes for both B+ and B− field polarizations. The general

expression for the trap position (|B±| = 0) as a function of the center current’s

relative amplitude rM and phase φM is given by:

y ± ix =

±

√
d2(1− rMeiφM ) + s2(2 + rMeiφM )± id

√
d2(4rMeiφM − 1) + (2s)2rMeiφM (2 + rMeiφM )

2 + rMeiφM

(6.6)

where the two ± signs on the right-hand side give four solutions, and the left-

hand side ± sign identifies the B± polarization. The four expressions are plotted

in Fig. 6.10 with the same formatting as Fig. 6.8. The fields in Equation 6.6 still

repeat when φM is advanced by 2π, but similar to the two-microstrip and three-

wire schemes, the phase must be advanced by multiples of 2π for trapped atoms to

return to their original locations. For different ranges of rM , it takes a 2π, 4π, or 8π

advance in the phase to make a “total” cycle, depending on rM ’s magnitude, shown

in Fig. 6.10(right). Crossovers between these regions of 4, 2, 1, 2, or 4 connected trap

curves (shown by color or rM in Fig. 6.10(right)) are found to be simple expressions

for rM , only for a simple case like s = d = 1.

We can find topological boundary values of rM between the number of connected
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FIG. 6.10: Trap minima locations in the three-wire (left) and three-microstrip (right)
models, for d = s = 1. Currents are marked by black dots. We plot various values of
rM (labeled curves), across 2π of phase φM given in 15◦ increments with large dots and
milliradians in small dots. The black dashed figure-eight curve maps constant φM =
±π/2 for a range of rM . Similarly, black dotted lines map φM = 0, π. Locations of B+
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curves by locating curves that contain a ‘crossing’ like the rM =
{√

10−3
2

, 1,
√

10+3
2

}
curves in Fig. 6.8 , which can split into more curves, or merge into fewer curves

with perturbations in rM . Mathematically, these values of rM mark the zeroes and

1/0 poles under square roots in Equation 6.6, marking transitions between real and

imaginary total values (trading x and y). Values of rM will depend generally on the

eccentricity s/d of the design.

6.5 Middle-field Seekers

One interesting detail that appeared in our course of trap simulation is that the

|+〉 trap appears as a donut (}) shape for specific frequencies, shown in Fig. 6.11.

Considering the energy diagrams of Fig. 6.12, for low-power perturbations (given

at Ω0 = 50 kHz), the |+〉 state is perturbed down in energy near the four atomic

resonances, before the Rabi broadens resonances to push against the |0〉 state to

bring |+〉 up in energy, as in the 1 MHz case also given in Fig. 6.12. This behavior

makes the |+〉 state a medium-field seeker, pushed high given low fields, and pushed

low in high fields, around the four ∆mF = ±1 crossings shared with |++〉.

Given a resonant radial linear trap, the low point in B− at trap center pokes up

in EACZ , creating a donut well mapping the medium field around the trap bottom.

Under gravity, this donut sags into more of a croissant (d) shape. We show GUI

simulations for these cases in Fig. 6.11, where gravity points downwards, in typical

atom chip orientation. We did not attempt to observe atoms in the donut specifically,

but this odd feature may hinder population observation in this trap, discussed in

Sec. 7.4.2.
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FIG. 6.11: Simulations showing the |+〉 state in a medium-field seeking trap, which
appears as a donut (top) in ACZ energy alone, and a croissant under gravitational sag.
Highlighted values are the applied frequency 20.18 MHz, the selected state |+〉, and the
gravity checkbox.
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FIG. 6.12: Calculations showing the |+〉 state’s AC Zeeman energy at low and high
driving Ω0, using Ω0 = 50 kHz (top) and 1 MHz (bottom). This is evidence that the |+〉
state, for certain frequencies, behaves as a medium-field seeker.
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FIG. 6.13: Example of a ‘pyramid’ trap, generally a kite shape, using the π transition
〈2, 0| ↔ |1, 0〉 and point-wire currents, where the quantizing axis BDC is not out of the
page, as in the rest of this work, but diagonal in the xy-plane, as labeled. Top two: The
Bx and By fields felt by the π polarization in varying amounts as BDC moves. Bottom
seven: The AC Zeeman energy potential shapes vary with BDC orientation, given as
polar angle from x̂ to ŷ on each plot.
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6.6 Pyramidal Trap

While playing around in the GUI, I found a trap with a square/diamond/kite

shape in the xy-plane with in-phase signals. By changing quantizing field from the

ẑ direction, in-and-out of the page, to a direction in the xy plane of the page, we can

use the Bx and by fields around the wires to drive π transitions.2 With quantization

direction along x̂ or ŷ, the AC Zeeman will only be affected by the Bx and By fields,

respectively, which are shown at the top of Fig. 6.13. With diagonal direction, both

affect AC Zeeman energy and thus the trapping potential, shown in the rest of

Fig. 6.13, where each BDC angle is written near the right wire. A local minimum

line of Bx and By run along the x̂ and ŷ axes, respectively, and using both allows

us to trap at their intersection. This trap makes an inverted pyramid shape in AC

Zeeman energy, with 1/r gradients roughly linear at trap bottom. In that case, the

angle will mix the alternating Bx and By components, which each have a zero-value

line along their axis.

This square-shaped trap with a near-linear bottom produces the (inverted)

pyramidal-shaped trap, and a pyramidal energy spike for high-field seekers. Moving

off resonance dulls the energy/depth gradient of the pyramid ‘tip’ but maintains

the sharp kite corners. This simulation uses a ‘wire’ model, not finite traces, so the

effect has sharper edges. The apparent symmetry of the 30◦ case suggests a local

gradient ratio of nearly 1:2 between the two directions, and perhaps an examination

of the analytic expressions can give explicit descriptions of the trap, as in Sec. 6.4.

Letting the quantization axis circle or oscillate locally around the xy-plane, this

trap has an x− y ‘breathing’ or ‘fortune teller’ operation, named after the origami

piece that opens in either of two directions. Regarding applications, one could look

at condensate superfluidity [73, 74] in a container with sharp edges, exciting spin-

2This arbitrary BDC direction was in an old version of the GUI, the modern one assumes BDC ẑ.

127



oscillation coupling modes [75] in a separately trapped cloud, or just observing the

novelty of a pyramidal trap.

6.7 Trap Schemes Using the Existing Atom Chip

We consider two unique wire configurations that could trap using the existing

U-Z-U setup on our atom chip (as in Fig. 7.4). The first configuration is a three-wire

trap, with equal current amplitude in each wire but reversed phase on the middle

one. The second trap geometry uses only two wires, with a phase difference near

90◦. Either method creates a local minimum in the B± field, which holds low-field

seeking AC Zeeman states.

In each case, we must consider multiple parameters at once. A primary concern

is the trap depth in µK of temperature (T = E
kB

). This quantity is defined as

the energy difference from the bottom of the trap (redefined 0 potential) to the

saddle point directly below the trap, comprised of ACZ energy and a linear gravity

gradient pulling away from the chip. Atoms hotter than the trap depth will find

their way out of a trap, setting a ceiling on allowed temperature, and a good rule

of thumb is to have a trap depth nearly 10× the thermal cloud temperature. The

two parameters that control the trap depth are current magnitude in wires and RF

frequency detuning.

A secondary concern is the trap’s position, generally measured away from the

surface of the substrate. Whether we load from an ODT (as near as 100-150 µm from

the chip before occlusion) or a micro-magnetic chip trap (10-200 µm, depending on

parameters), control over and knowledge of trap position is very helpful.

A third dependent parameter is the curvature of the trap bottom, measured

by trap frequency (if harmonic), and more specifically, how harmonic the trap is at

the bottom. This parameter adjusts many experimental properties such as average
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FIG. 6.14: High (4.8 Ω, blue)and low (11 Ω, red) estimates for the power-current curves.

temperature, collision rate, and energy separation of trapping modes.

The wire current is often measured by proxy using the known power sent to

the vacuum-chip system, measured in watts or dBm. We estimated the effective

resistance of the chip system using measurements of RF Rabi frequency (Ω0 ∝

|BRF | ∝ I/r)3 and estimating the distance from the chip to be 100-150 µm. These

measurements of inserted power and estimated current give an effective resistance

range of Reff ≈ 5 − 11 Ω (illustrated in Fig. 6.14.), and we take a convenient

number 8 Ω as Reff around 8.5 MHz. Using the equations P = I2
RMSReff and

IRMS =
√
P/Reff we can convert between the two units, e.g. 2 W → 500 mA

RMS, or 0.5 W→ 250 mA RMS. A recent result [44] using 6.8 GHz showed that

using 3.3 W of µw power caused ≈ 37 mA RMS in the wires (backed out from Rabi

frequency measurements), giving an effective microwave impedance of 2400 Ω.

The trap designs of this section are limited to the current atom chip wire lay-

out. Designs that optimize microwave frequencies or make use of extra chip wires

were studied in Sec. 6.4. The center of the U-Z-U arrangement has three parallel

conductive strips, primarily silver with gold plating, each 50 µm wide and 4 µm

3Simulations use current amplitude, implied here, but power calculations relate to RMS values
of the current, which are lower by 1/

√
2
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tall. These are separated center-to-center by 100 µm, and other unconnected paral-

lel traces exist between and beyond these three (see Fig. 2.12). Each U-wire middle

section meets wider traces which lead to contacts on the side of the atom chip. The

Z-wire has similar leads, which go either way, giving it a ‘Z’ shape.

6.7.1 Three-Wire Scheme

Again, a three-wire trap is formed by three equal amplitude currents, where the

outer wires are in sync, and the middle is opposite those. The result is a trap that

sits above the central wire as far as the side wires are from the middle, a fixed value.

This atom-chip distance can be adjusted by altering the current in the middle wire

relative to the outer wires, and horizontal adjustments to the B± minima can be

made with phase changes in the middle wire. Often, attenuation of signals causes a

phase shift.

We consider reasonable ranges of parameter space here. A few watts of power,

intending to use commercial 10 W amplifiers, and a detuning as far as a few MHz,

and a working fRF roughly 5-50 MHz. More power makes a deeper trap, but we

must be careful not to break the chip or the amplifier at large powers and long hold

times. A low detuning makes for a deeper trap but a faster state mixing rate and

higher loss. A large detuning mitigates these things but lowers trap depth for this

resonant process.

Plotted in figure 6.15 are trap depths for chip current and detuning parameters.

Each connected curve represents a different applied current in each wire. A very

high microwave power (above 40 W, causing 134 mA) is added as a comparison, to

exclude any reasonable microwave trapping experiment on our chip.4 We investigate

a handful of round numbers in nominal power, and calculations use various values

4This arbitrary number is an artifact of faulty envelope math using 20 W, but still represents
a system with very poor current generation with applied µw power.
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FIG. 6.15: A comparison of trap depth in the three-wire scheme as a function of detuning
for different current values in the RF and µw, as labeled. We compare five RF power
values and use the same total current with the ‘good’ AC skin effect in the microwave
data. It can be seen that the RF beats the microwave on resonance, but vice versa at
larger detunings.

of current amplitudes, as labeled.

6.7.2 Radiofrequency vs. Microwave Comparison

We expect the effectiveness of RF and µw traps to differ on two fronts: Atomic

physics differences in the ACZ effect between intra- and inter-manifold hyperfine

transitions and the atom chip’s engineering ability to carry a 6.8 GHz signal, rather

than a few MHz one. We show in Fig. 6.15 a comparison between RF |++〉 state’s

and the microwave |2, 2〉 ↔ |1, 1〉 transition if we could get equal currents, each over
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FIG. 6.16: Result of the AC Skin effect altering trace currents in the three-wire model.
The best AC Skin model shows much lower trap depth than either single-wire models
or a low frequency near-uniform current density model. Simulations use 134 mA for the
|2, 2〉 ↔ |1, 1〉 transition in the 3-wire model

a range of detuning.

On the physics side, it is worth noting that the total AC Zeeman energy split-

ting for the intra-manifold RF transition is stronger than a single inter-manifold

microwave transition on resonance (δ=0), but the µw is better far off-resonance.

Although the individual couplings are weaker in the RF compared to µw (from

Sec. 3.2), the |++〉 state experiences four near-resonant two-level transitions simul-

taneously. The inter-manifold µw transition is more powerful at high detuning,

indicated by the difference in δ
Ω

fall-off.
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6.7.3 AC Skin Effects in Modeling

Another important consideration is the current distribution in broad wires at

high frequencies. The AC skin effect must be considered, both in the phase and

amplitude changes it induces in the wire trace.

In the simplest case, no extension is given to the wire and it is treated as an

infinitely small point in the transverse plane. This thin wire case is shown in blue

in Fig. 6.16. While useful for pedagogy and analytic expressions, this case lacks the

geometric nuance contained in a finite-sized model.

In a slightly näıve approximation, one can assume in the high frequency limit

that the current splits itself to maximum current density the two extreme ends of

the wide trace. This turns out to be unphysical, and not as good a model as some

spatial analytical expressions in Sec. 8.7.1. This ‘bad’ AC skin model is shown in

orange in Fig. 6.16. It closely matches the expected trap depths using the thin-wire

method.

We must also consider that the high frequency will draw a large portion of the

current to the edge of the strip while adjusting the phase over space via the AC skin

effect, as analyzed in Chap. 8. We use our ‘Silvester2D’ method with ≈ 103 current

elements. The skin effect severely decreases the available B± in the trapping field

and decreases trap depth to roughly 80% of the un-adjusted value, shown in gray in

Fig. 6.16. We can expect that this slipping of phase contributes to the diminished

values for ‘clean’ B± fields in an accurate simulation.

Furthermore, the proximity effect between traces could substantially change

the aforementioned B± calculations, specifically lifting the zero to a finite value and

shifting the effective phase difference between the wires. I believe there is some

‘artificial’ cancellation when we use the same current patterns in nearby traces,

compared to ones which have additional phase and amplitude adjustments that
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is unique in each trace. I suspect that this proximity case may not fully cancel

to produce a B± field zero, with the affected phases and amplitudes leaving both

polarizations everywhere. Certainly, it would still be a field minimum in roughly

the same location, but it might not be as deep in reality as the idealized simulation.

It would seem that on the physics side, microwaves are a better choice since they

are stronger off-resonance, where we would prefer to operate. Additionally, using

microwaves with sufficient level splitting can target a single transitions via detuning,

allowing bipolar control of any hyperfine state. However, taking into account the

poor coupling setting a pretty low ceiling for expected current values, as well as the

AC skin effect, we decided to use much lower frequencies with the intra-manifold

RF transitions for our first attempts at AC Zeeman trapping.

6.7.4 Two Wire Trap: U-U / U-Z comparison

A two-wire trap is formed using two equal amplitude and frequency currents

in two parallel wire traces, where the differential phase between the two signals is

controlled. If the differential phase is zero, the local minimum in the B± field is

exactly between the wires. However, as the differential phase is introduced, the B+

and B− minima move vertically in opposite directions. A phase shift of 90◦ places

the trap as far above the chip surface as the wires are separated. In our analysis

here, the U-Z case has trace centers separated by 100 µm, and the U-U case has

200 µm between the traces. Using closer wires increases trap depth significantly for

the same power and detuning, as shown in Fig. 6.17, due to the 1/r falloff of the

magnetic field.

The height-to-phase relationship (y = −d tan(φUZ/2)) can be affected by the

gravity gradient for very shallow traps. This relationship is shown for the U-U

and U-Z traps at two different detunings in figure 6.18. It is worth noting that
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FIG. 6.17: Comparison of U-U (2d = 200 µm) and U-Z (2d = 100 µm) AC Zeeman
trap simulations using the 90◦ case, across the same range of current and detuning. The
U-Z trap is much deeper (note the y-axis scaling) as it sits closer to each generating wire
than the U-U case.
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one parameter, the phase difference, almost entirely determines the vertical trap

position.

The two-wire U-Z and U-U cases differ only by the separation distance of the

wires, although the trace impedance might differ in the experiment. In our calcula-

tions, we look at 500 mA of current at only two detunings (100 kHz and 1 MHz), and

primarily look at the effect of phase on trap depth and trap position. In Fig. 6.18,

we show the depth vs. phase curves for two pairs of cases. We can see that the

U-U case (orange and blue) shows much lower trap depths, owing to the increased

distance between the two traces, while the U-Z case (yellow and purple) shows the

much greater trap depths allowed by closer traces.

Since we might expect to load this RF ACZ trap from an ODT located 100-

150 µm away from the chip surface, we would prefer the deepest trap in this region.

If we load from the DC chip trap, we can be significantly closer to the chip. In figure

6.18, we plot the depth as a function of trap distance from the chip. We find that

the U-U configuration with further wires can make a deeper trap at larger distances

than two closer wires with a larger phase difference. While the U-Z is generally

deeper for the same power, the depth loses to the U-U case at larger distances.

6.7.5 Decision

We have run simulations across a variety of trap geometries and parameters,

revealing pathways toward making a proof-of-principle RF ACZ trap for atoms about

100-150 µm from the chip surface, using the present chip geometry. Comparing

microwave and RF transitions, the microwave looks to be a preferable option ab

initio, but the poor chip coupling precludes this without high power. Comparing

the three-wire and two-wire setups, the two-wire has less complexity with only one

differential phase to control and gives inherent vertical positional control. Trap
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FIG. 6.18: Simulated comparison of the U-U and U-Z two-wire trap schemes for two
detunings (0.1, 1 MHz), across a range of phase. The top graph shows trap position as
a function of phase, and the middle shows trap depth as a function of phase. We plot
these two values against each other in the lower graph, showing depth as a function of
distance to chip, for different trapping schemes.
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depths for the two configurations are almost equal at 100 µm, for the same power

and detuning.

Comparing the choice of U-Z or U-U wires shows that a deeper trap, very close

to the chip, could be formed using the U-Z, but at 100 µm and beyond, the U-U wires

make a deeper trap. For 2 W of RF power on both U-wires in the current atom chip

in a two-trace design, we expect roughly 30 µK of trap depth with δ = 2π× 1 MHz

at 100 µm, although we expect to see trapping at lower power as well.

When testing whether we could use higher powers in August 2020, we rendered

one U-wire (the ‘old evap’ trace) unusable. It did not fail open or short, instead its

impedance became unstable at any power, jumping back and forth between values

as monitored by reflected power, as if temporarily making and breaking connections

to other wires or itself. This variability in impedance causes unknown fluctuations

in Rabi frequency and the RF evaporation knife on this line, so we elect to use the

remaining stable wires, U and Z, in a two-wire configuration, which is the topic of

the next chapter.

6.8 Summary

This chapter covered five main topics, all to do with theoretical AC Zee-

man traps. First we used a pedagogical example, explaining how multiple phase-

controlled currents can generate a field that rotates in time, and is spatially inhomo-

geneous. Second, we showed the GUI, which simulates AC Zeeman potentials and

useful trap parameters from given currents and trapping states. Third, we exam-

ined a more general approach towards trapping, enabled by simplifying wires down

to points. We are able to write in relatively simple expressions the trap location

across a range of phase and power ratio, and plotted many such curves. Fourth, we

take a look at two relatively exotic AC Zeeman traps: the Donut and Pyramidal
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traps. Lastly, we take a look at applying this theory to two wires on the existing

chip, weighing the relative merits of a U-Z and a U-U trap, as well as using the

microwave transitions and looking forward to a three-wire trap.
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CHAPTER 7

RF AC Zeeman Trap

Demonstration

This chapter contains the core result of this thesis, the AC Zeeman two-wire

trap demonstration. We repeat some figures and equations from earlier chapters, to

help this chapter stand alone. The date of our first AC Zeeman trap was September

23rd, 2020, and all data was taken by December 23rd, 2020.

We begin with an introduction in Sec. 7.1, then take a look at hyperfine DC and

AC Zeeman energy calculation in Sec. 7.2, moving to chip geometry and numerical

simulations in Sec. 7.2.3. We discuss the experimental setup in Sec. 7.3 and present

measurements of trap frequency with theory estimates and empirical lifetime mea-

surements in Sec. 7.4. We demonstrate three forms of evaporation in Sec. 7.4.3, and

Sec. 7.5 demonstrates position changes with power and phase. We provide some

supplemental low-frequency data in Sec. 7.6, and discuss phase shifting effects in

Sec. 7.7. We conclude in Sec. 7.8.
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7.1 Introduction

Ultracold atoms and ions are commonly trapped by static electromagnetic field

gradients, far off-resonant optical dipole traps (ODTs), or RF Paul and Penning

traps, which contain an atom ensemble in vacuum through cooling and experi-

mentation. Traps often leverage internal quantum mechanical properties, such as

electronic spin state, to manipulate the ensemble’s externally observable position

and thermal properties. Spin-specific traps using RF magnetic near fields instead

of propagating optical photons are a valuable tool for chip-based atom interferom-

etry (AI) and quantum information. Further, trapped atoms have the potential

advantage of long phase integration times and localization for AI measurement.

In this chapter, I present the first demonstration of a polarization-specific ra-

diofrequency (RF) magnetic trap on an atom chip based on AC Zeeman (ACZ)

[38, 39, 40, 41, 42, 43, 44] potentials. Local minima in the B± circular polarization

components near chip wire currents become traps in AC Zeeman energy (EACZ),

depending on the power, frequency, and relative phase of the chip currents. Notably,

trap features are on the chip trace scale (10 − 100 µm), significantly smaller than

the wavelengths used (≈ 10 m). Additionally, this method allows trapping at an

arbitrary background magnetic field BDC , beneficial for clock state and Feshbach

resonance applications [76, 77]. While we use solely intra-manifold hyperfine transi-

tions to trap in this work, with ≈ 20 MHz radiofrequency resonance (set by the DC

bias magnetic field), this technique should be applicable to two-state inter -manifold

hyperfine transitions using microwave frequencies near 6.8 GHz in 87Rb, and in fact

microwave operation allows two-level bipolar targeting of any hyperfine state.

We show our qualitative ‘figure of merit’ in Fig. 7.1, which plainly shows atoms

dropped from AC Zeeman traps after a short time-of-flight. One remarkable fea-

ture of an AC Zeeman trap is its ability to trap spin states that are typically
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|2,+2>
|2,-2>

|1,+1>
|1,-1>

AC Zeeman trapped states

dc low-field seeker  |  dc high-field 
seeker

(c)

FIG. 7.1: Atoms released from AC Zeeman traps. (a,b) Side-view showing the axial
end-capping provided by the ODT for atoms in mF = +2 and −2, respectively. (c) Front
view along trap, imaged after a ≈ 15 s time of flight. We separate mF states horizontally
via Stern-Gerlach pulse after they have been dropped from their respective ACZ trap.
These images demonstrate that we have trapped both high- and low-field seeking DC
states.
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untrappable with the traditional DC Zeeman energy, e.g. the high-field seeking

|F = 2,mF = −2〉 or |F = 1,mF = +1〉 states. We demonstrate trapping of oppo-

site signed mF spin states in Fig. 7.1, each in a different AC Zeeman trap. The two

images in Fig. 7.1(a,b) show a side-view (−x̂) of the cigar-shaped AC Zeeman trap,

where the confinement from the ODT is evident in the horizontal direction. Atoms

in Fig. 7.1(a) are held at red detuning, populating primarily the |2,+2〉 state, while

atoms in Fig. 7.1(b) are held at blue detuning, populating primarily the |2,−2〉 state.

Each atom cloud is imaged after a short (≈ 5 ms) time of flight with a ‘prepulse’

from Sec. 2.2.8.

In the rest of Fig. 7.1(c), we show a view along the cigar trap (ẑ) after a short

time-of-flight, where a DC Stern-Gerlach field separates high- and low-field seeking

mF states, as indicated. The hold detuning selects the sign of mF , and a phase

difference of nearly 180◦ separates the traps for F+ = 2 and F− = 1. This result

starkly demonstrates the ability of an AC Zeeman trap to contain DC high-field

seeking states.

7.2 Theory

Predicting properties such as trap shape, position, oscillation frequency, trap

depth, etc. depends on calculating two components explained here: In Sec. 7.2.1

and Fig. 7.2, we explicitly calculate AC Zeeman eigenenergies and eigenstates of

atoms in an RF magnetic field. In Sec. 7.2.2, the circular-polarized B± magnetic

field components are calculated and plotted from known currents and geometries,

as in Chap. 6. The RF magnetic field maps are converted into trapping potentials

in Sec. 7.2.3 and Fig. 7.3.

Our AC Zeeman trapping method shares atomic theory with another hyperfine

chip confinement method called adiabatic trapping [78, 64, 65], but they differ in
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FIG. 7.2: DC and AC Zeeman atomic states and energies, each plot (b-d) also labeled for
F+ = 2 (top), and F− = 1 (bottom). (a): Rb-87 5S hyperfine sub-state diagram, with
RF transition polarizations labeled. (b1,b2): BDC-dependent DC Zeeman energy, with
resonance used in this chapter denoted by a dashed line. (c1,c2): AC Zeeman eigenstate
energies vs. bare states, plotted for Ω0/2π = 500 kHz, labeled by EACZ state, matching
color with red mF projection. In gray labels, we denote |mF ±NωRF 〉 projection at
far blue detuning. (d1,d2): Only the additional energy in each curve in (c) from its
low-power limit. Population curves are given in Fig. 3.4.

the core method of trapping. In adiabatic traps, inhomogeneous DC magnetic fields

perform trapping (and anti-trapping), with an RF or µw field providing adiabatic

passages between high- and low-field seeking mF states, confining atoms to a shell

potential. In our case, the RF B± near field generates the trapping field, with a

single homogeneous BDC ẑ magnetic field providing the quantization axis.

One phenomenon to recall here is the DC Zeeman effect, where an atom’s

spin projection into a quantizing DC magnetic field BDC breaks the degeneracy

and gives atomic hyperfine mF sub-states distinct energies. At low BDC field we

have the expression for the DC Zeeman energy shift ∆EDCZ = µBgFmFBDC '

±h · 0.7 MHz/G (28.58 G→20 MHz). Figure 7.2(a,b1,b2), shows the DC Zeeman

energy shifts for the ground hyperfine states of 87Rb.
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7.2.1 AC Zeeman Energy

The energies of ultracold atoms can be adjusted by microwave and radio-

frequency photons of energy ~ωRF via the AC Zeeman interaction originating from

the Zeeman Hamiltonian Ĥ = −~µ · ~B. Here, ~µ is the atom’s magnetic moment

and ~B is the magnetic field, with both AC and DC components. The AC Zeeman

energy acts as an avoided level crossing in frequency space, where energy levels are

rendered non-degenerate via the added AC Zeeman energy EACZ . In one picture,

the AC magnetic field has components that are rotating with the precessing DC Zee-

man magnetic moment “gyroscope,” producing a continuous force, when the applied

frequency nearly matches atomic energy gaps.

Analysis typically considers a ‘dressed atom,’ that is a ‘bare’ atomic state in

the |F,mF 〉 basis ‘dressed’ with multiple photons |mF , (N ∓mF )~ωRF 〉 (for F± =

3
2
± 1

2
= 2 or 1), so that all states are nearly degenerate. These are the grey

lines in Fig. 7.2(b). The total Hamiltonian is the sum of the DC Zeeman atomic

energies, photon field (both diagonal by construction in the dressed basis), and their

off-diagonal interaction energy Htot = Hatom +Hω +Hint.

Choice of transition polarization selects out a part of the total Rabi frequency

definition:

~Ωm′m ≡ 〈F ′,m′|−µ·B |F,m〉 =
gSµB

2~
〈F ′,m′|σ+B−+σ−B++2SzBacẑ |F,m〉 (7.1)

which inter-mixes mF states, using circular definitions S± = Sx ± iSy and B± =

Bx±iBy. Inter-manifold transitions can access all available polarizations, but within

each manifold, only one polarization gives non-zero transition elements. Interactions

in the intra-manifold RF case used here are seen strictly between adjacent states

so that ∆mF = +1 (−1), forming a near-degenerate ladder with four (two) Rabi

frequencies in F+ = 2 (F− = 1).
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Diagonalization reveals eigen-energies for the the AC Zeeman states from high

to low energy: |++〉 , |+〉 , |0〉 , |−〉 , |−−〉 for F+ = 2, and |+′〉 , |0′〉 , |−′〉 for

F− = 1. Eigenstates with ‘+’ are trappable low-field seekers, and states with ‘−’

are high-field seekers and cannot be trapped with this method. These AC Zeeman

dressed atom energies are represented in Fig. 7.2(c), with each state’s AC Zeeman

energy alone plotted in Fig. 7.2(d). The would-be degeneracy near resonance when

ω0 ≈ ωRF (i.e. low detuning δ ≡ ωRF −ω0 ≈ 0) is avoided via the added interaction

energy. As the Ω coupling varies over space with |B±|, states that have positive

EACZ are trappable as low-field-seekers, while states with negative EACZ are high-

field-seeking, as either case lowers the total energy.

A helpful experimental technique that is interwoven with this framework is

performing adiabatic rapid passage (ARP) between spin states, using a frequency-

sweeping source. ARPing can populate a choice of mF state (vis-à-vis Fig. 7.2

(e2) ) from the initial state |2,+2〉 along |++〉 by sweeping from below resonance

at significant power and BDC to between transitions, then lowering power to fully

populate that selected mF state (e.g. → {|2,+1〉 , |2, 0〉 , |2,−1〉 , |2,−2〉}). Notably,

the region near trap bottom has near-zero Rabi frequency, minimizing state mixing,

making a nearly pure frequency-dependent arbitrary trapped mF state available

when the population is very cold.

7.2.2 RF Magnetic Near Field

Here we consider a simple pedagogical example to illustrate the relationship

between the relative signal phase and the location of the magnetic polarization

minima. We analyzed arbitrary B± minima for four trap designs in Chap. 6.

Consider the case illustrated in Fig. 7.3(a), a cross-section of two parallel line-

like equal currents (Z and U) separated by distance 2d, which are in phase, φUZ ≡
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φU − φz = 0. Then, a point-like field cancellation occurs at the midpoint between

the currents for each of Bx, By, and thus B±. Shifting the phase difference by

φUZ = −90◦ = −π/2 (right lags), as in Fig. 7.3(a), then results in a point in space

at y = ±d (the right angle of a 45◦/45◦/90◦ triangle with the currents) where the field

moves purely right-circularly (or left circularly, at the opposite y = ∓d position),

as both currents oscillate through a cycle. At such a location, where one circular

polarization is pure, the other circular polarization component has an amplitude

zero. These minima in B± move equal and opposite to each other with phase shifts,

and are located at (for equal currents):

y± = ±d · tan(φUZ/2) (7.2)

When the two currents are precisely out of phase φUZ = ±π, the fields cancel

asymptotically far away at y → ±∞. Given power imbalances, the trap circles back

outside the wires on the x-axis for φUZ = π, and inside the wires when φUZ = 0,

both nearer the lower magnitude wire.

We can determine an arbitrary function for the position of B± minima in the

case of point-like AC currents IU at x = d and IZ at x = −d, with current ratio

rUZ = IU
IZ

and phase difference φUZ . The expression

y ± ix = ±id · 1− rUZeiφUZ
1 + rUZeiφUZ

(7.3)

gives the x and y coordinates as the real and imaginary parts of the right side of

Eq. 7.3, scaled by geometry as d, with sign matching the B± polarization component.

When rUZ = 1, traps remain on the x = 0 line, and y simplifies to the tangent

expression Eq. 7.2, moving vertically with phase. Varying current ratio at constant

φUZ = ±90◦(eiφUZ = ±i) traces a circle around the origin (as shown in Fig. 6.8).
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To predict the trapping potential from a current source with the spatial extent

of our chip traces, we simulate a 2-D plane of the B(x, y, z0)-field numerically, due to

complex RF current cross-sections ĨU(x, y)ẑ and ĨZ(x, y)ẑ. Both the currents evolve

at the driving frequency ωRF = 2πfRF , with some insertion phase difference φUZ =

φU − φZ (mod 2π) by which U precedes Z. We can write IZ = ĨZ(x, y)eiωRF tẑ, and

IU = ĨU(x, y)ei(ωRF t+φUZ)ẑ as the complex, spatial currents. In this simulation, wires

have no cross-talk or proximity effects on each other, which does adjust experimental

current distribution and phase, as discussed in Sec. 7.7. These simulated currents

induce complex magnetic fields perpendicularly in Bx and By via the Biot-Savart

law. We integrate over the finite-sized conductors with further complex information

from a skin-effect computation on each wire separately (as in Chap. 8 and [79]). This

complex quasi-static approach maps the current phase information into complex B-

fields. The Bx and By fields are then converted into their circular parts: B±(x, y) =

Bx(x, y) ± iBy(x, y). Note that this conversion is not customary or unitary but

dovetails nicely in our Rabi definitions.

7.2.3 Trap Simulation

Combining these elements, we calculate a diagonalized five- and three-level

Hamiltonian over the Rabi map Ω(x, y) generated by B±(x, y) using Eq. 7.1, shown

in Fig. 7.3. These results reveal multiple trapping and anti-trapping surfaces of AC

Zeeman states, depending on both the amplitude of fields (as Ω) and the frequency

detuning of the field (as δ). Increased detuning lowers EACZ from the full resonant

value, thus lowering both trap depth and trap frequency. Trap bottom shape changes

from a linear cusp on resonance, smoothing to a harmonic shape at higher detuning,

akin to the effect of the quantizing field value in a DC chip micromagnetic trap. AC

Zeeman states can be populated from a pure mF state via a frequency sweep from
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FIG. 7.3: Pedagogical trap explanation and sample AC Zeeman trapping potentials. (a)
A pedagogical explanation of the polarization parity when the right-hand wire is phase-
delayed by 90◦ = π/2. Two locations are seen to have pure circular polarization, where
the opposite parity has a minimum. (b,c) Simulated contours of log10(B±) with finite-
sized wires matching the experiment. Bottom: Simulated trapping and anti-trapping
energy surfaces for all RF AC Zeeman states, using φUZ = +90◦ for F+ = 2 (left) and
−90◦ for F− = 1 (right). Simulations use |IA| = |IB | = 500 mA in two 50 µm×4 µm
wires, separated 100 µm, center-to-center. Applied frequency fRF in this simulation is
21 MHz for BDC = 28.58, leading to nearly 1 MHz separation of trap bottoms. Black
contour lines mark each 10 µK.
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far detuning, beginning in the appropriate state, as indicated in Fig. 7.2 (c). In this

work, we only populate the curves |++〉 from |2,+2〉 and |+′〉 from |1,+1〉.

While the skin effect and finite-size simulation are a step beyond point-like

currents in a 2-D simulation, we find that inductive coupling with the proximity

effect between the chip wires has a significant impact on trap location, as it adjusts

the power and phase in each of the participating wires. A high-frequency finite ele-

ment electromagnetic 3-D simulation software (e.g. Feko) can be used to simulate

atom chips in order to iterate designs with more accurate feedback than the 2-D

analytic models used in this work. We cover this material separately [80], but a

significant finding is that each wire has a proximity effect on the other, causing an

adjustment in power and phase along each wire, beyond the inserted parameters,

whose strength depends on the phase difference. In practice, we tune insertion pa-

rameters empirically to accommodate these changes, using measurements of atoms

as feedback.

7.3 Experiment

This experiment uses just two horizontal microchip wire segments, nominally

50 µm×4 µm× ≈ 2 mm, at the center of the atom chip. Three suitable wires, in a

U-Z-U arrangement (A|@, as in Fig. 7.4) were used: both U-wires (200 µm center-

to-center) for low-power Rabi map work (Fig. 7.5), and the Z-wire and one U-wire

(100 µm center-to-center) for the high-power trapping and Fig. 7.6. The Z-wire is

used for the DC trap and the diagonal DC push/pull in Fig. 7.7.

The RF system uses a multi-channel direct digital synthesizer (DDS), a phase-

controlled, frequency sweeping RF (1 GS/s, 400 MHz) source (the WeiserLabs
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FIG. 7.4: Setup and a sample timing diagram for the AC Zeeman trapping experiment.
Top: Cartoon schematic diagram looking up at the atom chip. Three atom chip traces
(W, Z, U) carry AC currents, generating an inhomogeneous B± field. Each center seg-
ment is 50 µm wide, separated 100 µm center-to-center, and roughly 2 mm long. We
display these near-fields as log10(B+). for φUZ=115◦ A near-uniform BDC field provides
the quantizing ~z-axis. An ODT holds atoms axially, and a single-coil provides the BSG
field. Bottom: A sample timing diagram (not to scale), here for the inset of Fig. 7.8.
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FlexDDS-NG1), with a MATLAB library 2 to send experimental command packets

over local Ethernet. The DDS’s sequential commands are TTL triggered by the

main apparatus sequencer. The RF outputs are sent through an RF preparation

chain (described in Sec. 2.7), and then through vacuum ports to the chip traces

(shown in Fig. 2.12).

Atoms are initially prepared in a DC micromagnetic chip trap [81] containing

roughly 2 × 105 atoms at 1-2 µK. We adjust DC trapping fields to bring the trap

location closer to the chip, roughly centered between the U and Z wires, and relax the

trapping potential, as indicated inthe timing diagram of Fig. 7.4(b). We also turn

on additional axial confinement along the ẑ-axis from the ODT during this DC trap

movement, as shown in Fig. 7.4(a). With the DC trap in place, we send in RF power

into the U and Z wires and sweep fRF from far red (but above fRF/2 = 10 MHz

to avoid the second harmonic) to near red (δ = −1 to −0.5 MHz) at full power,

maintaining the population in the DC trapped state, |2,+2〉. We then ramp off

the DC trapping fields except for BDC ẑ, leaving atoms only in an AC Zeeman trap

with hold frequency fRF . The relative RF phase φUZ is kept constant,3 throughout

the loading process. All subsequent experiments begin with this DC chip trap to

AC Zeeman trap loading process. We measured free-fall thermal expansion of atom

clouds and find temperatures in the range 0.5-2.5 µK, although this number depends

heavily on the chosen trap parameters: detuning, phase, and power.

As this work represents a proof-of-principle AC Zeeman trap, we did not spend

much effort in globally optimizing procedures of trap loading, movement, evapora-

tion, and so on. Broadly, some working parameters were found and locally opti-

mized, though we would expect some improvements from more careful loading and

movement of the trap, when precision or a colder sample is needed.

1https://www.wieserlabs.com/products/radio-frequency-generators/WL-FlexDDS-NG
2https://github.com/drewrotunno/FlexDDS
3Although a small sweep can account for the frequency-dependent phase from Sec. 2.9
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FIG. 7.5: Two-Wire U-U Rabi maps for a full cycle of phase delays, at 10◦ increments
between each cell, beginning left to right in the bottom row, then up rows each 60◦.
Nominal power in each wire is 20 mW, for a 10 µs pulse using 8.5 MHz and BDC ≈ 12.3 G.
More information about this imaging technique is found in Appx. C.

7.3.1 Low-Power Field Mapping

One method used in preparation for high-power trapping was low-power field

mapping, using snapshots of a wide-spread atom cloud after a brief RF pulse (few

µs) with a spatially-varying Rabi frequency [82], which we call a ‘Rabi map,’ shown

in Fig. 7.5. Rabi maps are illustrated with more time steps and a more detailed ex-

planation in Appx. C, and an animation is included in the online materials. Atoms

oscillate fully out of their state and back for a resonant applied field, with a rate de-

pendent on the amplitude of the local B± field (vis-à-vis Fig. 7.3). Images produced

with this method appear as bright and dark bands mapping contours of iso-Ω0 as

B− acts on the F+ = 2 state as the field shape changes across a cycle of phase in

Fig. 7.5. Evident in this figure across the third row is the local ‘trap’ minimum,

which doesn’t flop as fast as the atoms around it, moving toward the chip as phase

approaches 360◦. The trap we use is roughly 260◦ = −100◦. Additionally, this
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imaging method helps illustrate the ‘saddle-point’ area of flat field below the trap,

as in the 290◦ cell of Fig. 7.5.

In Fig. 7.6, we use Rabi maps to demonstrate the polarization selection between

F+ = 2 and F− = 1, using opposite phases (top and bottom) for each hyperfine

manifold (left and right).4 Notably, the same generating conditions form a useful

trap under the atom chip for only one manifold at a time, while the other gets a

monotonic gradient away from the wires. When we perform microwave evaporation

in a later section, it is roughly these surfaces that we evaporate to. Examining this

Rabi map data over space and time can extract Ω0(x, y) information [82], but we

did not analyze it in this manner. Generating and observing Rabi maps is useful

when coarsely tuning relative current and phase relationships, testing unknown chip

impedance behavior with a low risk of frying the chip at high power.

Another field probing method is to pulse on the trapping field for a significant

amount of time (few ms) and look for forces from gradients acting on the atoms,

like the ACZ force experiment of Chap. 5. Applying such an impulse can shift a

cold cloud’s center of mass, or act on a large spatial extent of atoms, producing

clumping or spreading of atoms spatially after some time-of-flight due to gradients

from trap-like curvature.

The third method for imaging RF field strength using atoms is to perform a

medium-to-low power ARP sweep. Atoms in strong Ω0 regions will fully pass to the

final state, whereas regions with low or no Ω0 power will leave atoms in their initial

state. This process yields a single contour line at a time, set by dωRF/dt ∼ Ω0(x, y)

and the Landau-Zener transition approximation [64].

4We ARP atoms from |2, 2〉 to |1, 1〉 via a 100 µs sweep in a hand-made dipole antenna ≈ 10 cm
from the atoms.
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FIG. 7.6: Two-wire U-Z Rabi map images demonstrating the difference between hy-
perfine manifolds (left and right) with respect to field polarization (top and bottom).
Hyperfine states are imaged only the initial state |2,+2〉, after a ≈ 2 µs RF pulse with
≈20 mW. Atoms are sent to and returned from |F = 1,mF = +1〉 via microwave ARP
sweeps before and after the RF pulse. Atoms in the F=1 state map the B+ field, while
F=2 atoms map the B− field. Approximate chip trace sizes are drawn in. More infor-
mation about this imaging technique is found in Appx. C.
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7.3.2 Dipole and Ioffe End-capping

The 2-D AC Zeeman trap described here provides a restoring force in only two

dimensions (x and y) and alone makes an open-ended cannoli shape, leaking atoms

axially along the ẑ-axis. We elect to use a transverse −x̂-oriented optical dipole

beam to provide end-capping (in ẑ, plus modest ŷ confinement), in the form of a

1064 nm laser with roughly 0.6 W of power is focused to a beam waist of 120 µm. By

design, the ODT is not sufficient to hold atoms against gravity, but provides axial

end-capping and localizes atoms, with estimated trap frequency ωz/2π =22 Hz. The

optical dipole end-capping was almost always utilized in our experimental trap setup

for consistency, atomic density, and lifetime benefits.

We observe the axially confined atoms in opposite mF states in Fig. 7.1(a,b).

Without the ODT, we observe slight axial confinement for mF=+2 (red-detuned

|++〉) and spreading of mF = −2 (blue-detuned |++〉) from the axial minimum

between the two BDC-generating coils. Atoms in |2,−2〉 appear to hit ‘walls’ of un-

known origin as they spread axially, not leaking out the ends as we had suspected,

remaining confined on the chip but much less dense, covering a larger spatial extent.

Effects from perpendicular trace segments and conductor roughness appear to con-

tribute partially to end-capping or localizing the atoms along the trace in this case.

We had expected surface roughness effects to diminish significantly using AC, but

there is clumping structure observed in atom density over a large axial atom cloud,

possibly due to roughness.

7.3.3 Throw from F=2 and Catch in F=1

While an initial red detuned ACZ trap can confine |2,+2〉 atoms directly from

a DC chip trap, the |1,+1〉 state, which can be reached with a single microwave

ARP sweep, is anti-trapped (|−′〉) for red detuning. To trap |1,+1〉, we need to
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start from initial blue detuning, with a phase flip in φUZ with respect to the F+ = 2

trap, to trap |+′〉. If we simply drop atoms, make a population-changing microwave

pulse, then catch them again in a new RF ACZ trap, they would be farther from

the chip due to gravity, in a weaker trap, with downward velocity.

Instead, we elect to shift the atoms toward the chip while moving red with

detuning and off in power, releasing the atoms in a slight upward trajectory in

mF = +2. When the RF power is off, the frequency is brought to far blue detuning

with an opposite phase, while a hand-made dipole antenna ≈ 10 cm away emits a

≈6.894 GHz microwave ARP sweep (1 MHz / 100 µs) to transfer the |2, 2〉 population

to |1, 1〉.

We observe that this microwave antenna field couples into chip wires, inducing

local gradients in microwave power. Surprisingly, a fixed local minimum in this field

is observed, an accidental low-power AC Zeeman trapping field, fixed in phase by

the unknown coupling into multiple chip wires. However, the microwave field fully

transfers atoms in this throw-catch application.

Atoms now in the ballistic |1, 1〉 state are ‘caught’ by the RF trapping field

sweeping in from above resonance at high power. The timing of each “throw and

catch” RF/φ sweep is on the order of 2 ms, adjusting interval timing and phase em-

pirically, optimizing for high population with minimal heating. This throw and catch

process precedes measurements of the trapped F− = 1 states in Figs. 7.1(c) and 7.7.

7.4 Results

The primary result is that we have demonstrated trapping using a two-trace AC

Zeeman atom chip trap, as evidenced by trap oscillation frequency measurements

in Fig. 7.8, and hold lifetime measurements in Fig. 7.9. Further, we trap atoms

in states that are untrappable in a DC trap, as demonstrated in Figs. 7.1 and 7.7.
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Motivated by using the ACZ as a general-purpose trap, we test forced evaporation

in this trap using conventional and unconventional methods.

We measure trap frequencies for a range of detuning and power, comparing

these values to numerical AC Zeeman potential surface fitting in Sec. 7.4.1. We

observe a few hundred Hz of trap frequency, decreasing off resonance, using nominal

measured power 200 mW (23 dBm) of RF power sent to each the U and Z wire

traces. We compare these trap frequency measurements with simulations which use

only independent measurements of Ω0 and position, per Sec. 4.3. Resonant traps

are linear at the trap bottom, and more detuning can round the trap bottom into

a harmonic trap of decreasing frequency. Lifetime measurements as a function of

hold frequency are presented as observed in Sec. 7.4.2, without a model to explain

their values. Long lifetimes are found at significant detuning, at the cost of a lower

effective EACZ .

We also demonstrate that the trap position is controllable with both the phase

and relative RF power sent to the U and Z wires, which we discuss in Sec. 7.5.

Phase-delay and power loss effects on-chip after insertion play an important role,

but these become tractable problems to plan around with detailed simulation and

in current experiments with experimental compensation.

One major unexplained finding is the resonance asymmetry in lifetime and trap

frequency, where we cannot trap more than 1 MHz red detuned but retain a trap

more than 20 MHz blue detuned in our setup. This behavior held at 8.5 MHz

and 20 MHz and is only partially explained by the phase-delay in wire coupling

(≈ 1
2

◦
/MHz). We see that the second harmonic play a significant role, killing the

cloud when we sweep from below fRF ≈ f0/2, and we must remain aware of the

RWA approximation, where it might not hold that f0 + fRF � f0 − fRF , or even

f0 � Ω/2π. Additionally, we expect to observe spin-mixing of |++〉 into the also-

trapped |+〉 state, as we have saw in Sec. 5.4 with a long ACZ gradient pulse on
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atoms fully retained in an ODT. However, we did not observe this spin mixing in

this experiment when we tried to induce it near resonance.

7.4.1 Trap Frequencies

Trap frequencies are one of the primary properties of harmonic traps, relating

potential energy curvature (as simulated) with the oscillation frequency of confined

atoms (as observed). Experimental data employs some perturbation on atom posi-

tion, then we drop and observe position evolution (measuring momentum at release

via fixed time-of-flight) with increasing hold time, as shown in Fig. 7.7. These po-

sitions in x and y are fit to a exponentially damped sine curve to give the trap

frequency.

In the example of Fig. 7.7, we perturb opposite mF stretch states in each

manifold using a DC current in the Z-wire to generate a diagonal Stern-Gerlach

force, pushing |2, 2〉 and |1,−1〉 states while pulling |2,−2〉 and |1, 1〉 states. This

demonstration was devised by ShuangLi Du as a method to prove atoms remain

high- and low-field DC seeking, while ACZ low-field seekers in |++〉 and |+′〉 states.

We see this impulse gives atoms opposite initial direction and roughly 1:
√

2 ratio

for F =1 or 2 trap frequency.

Detuning plays a significant role in trap profile as examined in Sec. 6.3, creat-

ing linear-bottomed traps near resonance, perturbing into shallower, more harmonic

traps off-resonance, plotted for 1 MHz detuning in Fig. 7.3. We continue to plot har-

monic fits to these sharp potential curves, and heavily damped position oscillation

fits.

In Fig. 7.8, we plot measurements of trap oscillation frequency versus detun-

ing, and compare these with fits of ACZ trap bottoms from simulations using an

independent measurement of Ω0 (from Sec. 4.3). We observe trap frequencies ap-
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FIG. 7.7: Atoms released from AC Zeeman traps. We show observed trap oscillations (x
in (a) and y in (b)) for atoms perturbed in-trap by a diagonal DC Stern-Gerlach pulse,
held in traps (nominally 400 mW) slightly below and above resonance, 19.5 MHz and
21.5 MHz, respectively, with BDC = 28.58 G, and nearly 180◦ out-of-phase for F− = 1
and F+ = 2.
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proaching 1 kHz on resonance in the |++〉 state, using 200 mW of power into each

trace. These measurements also reveal significant asymmetry between the vertical

and horizontal oscillation frequencies, even though simulations suggest symmetric

trap bottoms. With balanced currents, the horizontal direction (x) should be sym-

metric, while the vertical (y) will always have a high field above and the gravity-

fighting hump below it. Hot atoms in deep traps will sample this non-harmonic field,

thus one would expect a harmonic potential and symmetric frequencies only for the

coldest samples. This suggests that the deepest traps on resonance will have more-

symmetric x and y trap frequencies, as we observe. Inset in Fig. 7.8, we give data

on trap frequencies as a function of applied power. We observe square-root scaling,

as Ω0 ∝ |B±| ∝ I ∝
√
P . Specifically, over the range measured, we quadruple power

and see only double trap frequency.

While a trap hold frequency off-resonance can project atoms into single states

impulsed by a Z-wire Stern-Gerlach field as in Fig. 7.1, atoms in mixtures near

resonance do not lend themselves to this technique. When attempted, eigenstate

components in mF = +1 and mF = −1 stretch the cloud diagonally and cannot

be analyzed by cloud position alone. Therefore to obtain diagonal oscillations, we

require a process shown in the timing diagram of Fig. 7.4. We lower the Z-wire’s

RF power linearly over ∼10 ms, then quickly snap it back to its full value. This

procedure creates the oscillations measured in Fig. 7.8. The ODT is turned off when

the Z wire’s RF power is snapped back on so that measured frequencies are due to

the ACZ potential alone.

7.4.2 Trap Lifetimes

We measure the |++〉 trap lifetime with a conventional e−t/τ fit over a variable

hold time t of Gaussian atom number fits after a few ms times-of-flight. Experimen-
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FIG. 7.8: Measurements of x (blue ×) and y (red 4) trap oscillation frequencies vs. RF
frequency fRF on the main axis, and over a range of power inset. Each set maintained
BDC ≈ 28.58 G, effective nominal phase φUZ = −100◦ from experimental insertion
phase 73◦, and power nominally 200 mW or 23 dBm in each wire. Theory curves (and
1-σ shading) use independent measurements of Rabi frequency and trap position to
infer total trace current and effective phase for simulated potential fits. Theory values
with 1-σ uncertainties used: [IU (mA), IZ (mA), φUZ(◦)] mean: [225, 250, 130], low:
[174, 184, 139], high: [275, 306, 115]. Inset: Trap oscillation frequencies for a range
of input powers, above and below the 23 dBm at constant frequency 20.5 MHz, with
hand-picked phase φUZ = 121◦. Linear fits of this data gives ≈ 53(6) Hz/dB.
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tal sets generally include 32 equal spaced, randomly ordered points covering nearly

2τ of hold time, using the ODT as described in Sec. 7.3.2. We present data for a

range of hold frequencies fRF , at two different powers (nominally 200 mW and 400

mW per wire) Fig. 7.9.

The longer lifetimes belong to the lower power, with its lower trap frequencies

and shallower trap depth. We offer no theoretical fit for this data, but we suspect

thermal losses as a major loss mechanism, as the sample appears colder for longer

hold times and the lack of observable transition from |++〉 into the |+〉 state. Fur-

ther, a linear trap shape has a different distribution of trap kinetic energy levels

than the equal-spaced harmonic case.

An inset plot shows trap lifetime data close in to the resonances of the system.

We had selected points both on, between, and outside of each of the four resonances,

and had expected every other point to have some stability in a relatively pure mF

state, but only the mF = 0 had a longer lifetime than holds near level crossings.

The number loss appears to be evaporative, as we see the spatial cloud sizes

shrink with hold time and number loss, by roughly 5-10% over a τ lifetime. We

posit that this effect can either happen ‘over’ the potential, with trap depth not

much greater than sample temperature, or ‘under’ the potential when atoms pass

through the central Ω = 0 location before re-projecting into untrapped states like

DC Majorana losses. We do not attempt a model for either of these, but tracking

down this mechanism can make AC Zeeman trapping a more valuable experimental

tool.

We looked for atoms that might flip from the |++〉 state to the also-trapped

|+〉 state by blue-projecting back into bare mF states and Stern-Gerlach separating

the final population. We purify the spin sample, removing any of the initial |+〉

population by sweeping far blue to 40 MHz, where |++〉 remains trapped, but

gravity takes the |+〉 trap population. We then sweep to and hold near resonance,
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where we did not observe any significant subsequent population in the |+〉 (i.e.

|2,−1〉) state after long hold times, when we sweep back to high detuning. We had

expected this result from previous spin-mixing results (Sec. 5.4) examining atoms

subject to long AC Zeeman field gradient in the ODT, which suggests they would

mix after some time, faster with low detuning and low power.

7.4.3 Methods of Evaporation

We demonstrate evaporative atom cooling from an AC Zeeman trap using two

conventional methods (RF and microwave ‘knife’) and an unconventional method,

shifting the phase to move the trap near the chip surface, where the hottest atoms

collide with the surface and leave the trap. We plot our results in Fig. 7.10 and 7.11.

Traps used for the [RF, µw, Phase] evaporation employed different trap compression

values, holding fRF = [19.4, 19.7, 19.7] MHz with nominal power 200 mW for each

(note the RF evaporation was from a more relaxed trap than the other two).

For temperature calculation, we use radial trap frequencies ωxy/2π = [282, 577, 577] Hz,

interpolated and averaged from Fig. 7.8, while the ODT’s ωz/2π = 22 Hz is derived

from prior experiments [44]. Atom temperature is inferred from cloud size after a

known time-of-flight using these values. Trapped atom collision rates are estimated

to be [6,150,130] collisions per atom per second for the [RF, µw, Phase] evaporations,

respectively. Atoms are already evaporated significantly before the AC Zeeman load,

although decent collision rates can still be achieved through selection of trap param-

eters. With larger populations, and tighter or linear [83] traps, we might be able to

cool more effectively.

All three methods reduce the ensemble temperature at the expense of atom

number, although phase space density improvements were minor for the employed

parameters, shown in Fig. 7.11. The ability to cool atoms in an AC Zeeman trap
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suggests that one may be able to produce a Bose-Einstein condensate (or a degen-

erate Fermi gas, in other species) in any of the mF states contained in |++〉 (or any

via microwave) and at any sufficiently degeneracy-breaking background magnetic

field.

Intra-manifold RF forced evaporation is nearly the same conceptual process

as standard DC chip evaporation into anti-trapped states (in Sec. 2.2), while the

µw coupling |2,+2〉 → |1,+1〉 moves atoms to a broad ∼ 1
y

gradient in the B+

field, as in Fig. 7.3(c). Notably, the choice of RF frequency (as detuning) can

raise the trap bottom from zero to the detuning ‘floor,’ and this choice determines

the evaporation knife endpoint. For example, the RF knife approaches this value

at nearly 0.5 MHz, and the microwave evaporation goes to 6, 834 + 3 × 20 + 3 ×

0.3 ≈ 6895 MHz (considering the hyperfine splitting, the BDC resonance, plus the

detuning, respectively, between the states |2,+2〉 and |1,+1〉 who have ∆mFgF = 3).

Detuning also simultaneously controls trap density, depth, and collision rate,

enabling dynamic trap control with fRF . In our simple proof of evaporation, each

parameter was ramped linearly from a fixed start frequency over 100 ms to a different

endpoint, in sequential order. Points and error bars are mean and standard deviation

of three measurements, assuming a known trap frequency (as given earlier) for each

set.

The fact of using RF and microwave as an evaporation technique also suggests

its use in something like DC/RF adiabatic trapping [64, 65, 66], that might be

called RF/RF or µw/RF adiabatic trapping. Rather than sweeping from high to

low frequency to connect potential curves to evaporate at the edges of the trap, we

can sweep from low to high frequency to raise the center of the potential, generating

‘ring’ or ‘shell’ potentials from the combination of AC Zeeman potentials, by further

dressing the surfaces given in Fig. 7.3.
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FIG. 7.12: Position control of trapped atoms via phase (top, left) and power
(right). Each pixel is 7.4 µm. Estimated effective phases shown on the left are
{−110◦,−100◦,−75◦}, and power was adjusted -3 dB lower on either side.

7.5 Trap Position Control

We demonstrate control of trapped atom position (vis-á-vis Eq. 7.3) in a rather

direct manner in Fig. 7.12. In all cases, we initialize atoms as described in Sec. 7.3,

then adjust phase or power linearly over ≈ 20 ms, then do a hard cutoff of RF power

at a constant frequency, imaging after a short 2-8 ms time of flight. For modest phase

adjustments, released atoms are seen to have drastically different temperatures.

Atoms released from the high-phase (|φRL|), weaker trap maintain their small size

and high density at a lower position, whereas atoms released from a lower-phase,

tighter trap are higher after the same time of flight, but much wider in momentum

spread, due to the tighter trap it is released from. As phase approaches 0◦, the

trap moves vertically approaching the chip, eventually losing atoms to collisions

with the room-temperature surface. Partial clouds appear as ‘cut’ Gaussian curves,

containing atoms with downward momentum, as observed in the time of flight image

in Fig. 7.12(top).

Adjusting the current ratio moves the trap in a left-right arc, closer to the lower

current amplitude wire. Trap depth is necessarily lower as we turn down either wire

to roughly half power, giving lower atom densities for the clouds moved roughly 50
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µm off-center, from between to above each participating wire in Fig. 7.12.

7.6 Lower Resonance Data

We measured trap frequencies and lifetimes initially near 8.5 MHz / 12.3 G

and present them in Fig. 7.13 for supplementary comparison to the main findings.

Similarities include the red/blue disparity, losing trapping just red (δ ∼ −1 MHz)

of the transition while trapping far blue of the resonance. The near-degeneracy of

this case masks some of the non-degenerate structure seen in the 20 MHz data. We

had initially intended to repeat this trapping experiment using a the 8.5 MHz range,

matching the force experiment of Chap. 5, but VNA measurements of the chip (in

Sec. 2.9) motivated moving the working frequency to a much flatter phase-response

range.

7.7 Extra Phase Effects

Just as an alternating current in a finite-sized conductor will re-distribute den-

sity and phase within itself via the ‘skin effect’ (the focus of Chap. 8), driven currents

in nearby wires will also re-distribute each other, which we refer to as the ‘proximity

effect.’ This type of behavior was observed in our system, and required compensa-

tion from experimental insertion power and phase. Specifically, Fig. 7.6 uses the U-Z

wires and required power re-balancing by about 1 dB to center the trap at the two

different phases. However, Fig. 8.10 uses the two U-wires at low power and does not

have any obvious left-right movement with phase, remaining balanced. For proper

modeling, we must go beyond the finite-sized individual wire skin effect model used

here, including proximity interactions and longitudinal effects.

In addition to this active proximity effect, a passive phase change comes from
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a line impedance mismatch. Insertion from a 50 Ω feed line to an unbalanced

(Z = R + iX 6= 50Ω) chip trace will cause a power loss and a phase delay for

each line independently. Vector network analysis of each line suggest a fixed ≈ 5◦

difference, where the Z-wire has slightly more delay than the U-wire. In our system,

we believe the signals are attached in opposite directions on the chip, providing an

extra 180◦ of phase adjustment. Useful traps were formed using insertion phases

near 75◦ and 275◦ for the F+ = 2 and F− = 1 traps, which produce effective phases

nearly −100◦ and +100◦, respectively, making 175◦ inserted into the effective 0◦ in

our chip.

Additionally, across the 20 MHz range, there is a nearly linear impedance ad-

justment of −1
2

◦
/MHz in the Z wire with a mostly flat U response. We suspect this

contributes to the red-blue asymmetry in trap frequencies measured in Figs. 7.1,

7.8 and 7.13. Namely, this extra phase adjustment brings the trap closer to the chip

when blue of detuning, enhancing trapping, while for red detuning it moves away

from the chip, weakening the trap. According to simulations, this few-degree phase

effect is only a modest adjustment, but the proximity effect may amplify phase off-

sets, and other unknown atomic and experimental effects may contribute to this

asymmetry.

Again, this uncertainty and frequency-shifting of phase does not prevent trap-

ping, but makes it difficult to predict actual experimental parameters without em-

pirical measurements and simulation. These effects were easily compensated for

with injected phase and power control.

7.8 Conclusion

This chapter presented the primary findings of this thesis, demonstration of an

AC Zeeman trap. We began with a brief review of the AC Zeeman physics from
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Chap. 3, and trap generation from Chap. 6. We discussed the experimental details,

and performed some low-power field observations as a preliminary step. We then

measure trap frequencies, which we can compare against theory curves, as well as

trap lifetimes, which we do not have a good model for currently. Each of these results

displays a significant asymmetry, as we can trap atoms at very far positive detuning,

but cannot hold atoms at a modest negative detuning. We also demonstrated three

forms of evaporation (although phase-space-density improvements were modest), as

well as a ‘throw-and-catch’ technique to trap the F− = 1 state. For completeness,

we provide some low-frequency data, which also displays the detuning asymmetry,

and end with a discussion of a partial cause of this issue, from phase insertion effects

when using multiple traces.
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CHAPTER 8

AC Skin Effect

This chapter reproduces a publication of ours [79]1, which was motivated by

a desire to understand the magnetic near fields generated by a wide ‘lateral’ wire,

knowing an alternating current will redistribute itself in amplitude and phase, and to

see whether we could trust our electromagnetic simulation software, both commercial

and hand-coded. In this chapter, δ is not detuning, rather it represents the skin

depth, a parameter that characterizes current curvature in planar and cylindrical

cases.

This project springs from one of Seth’s ideas, that one could probe the magnetic

field just above a wide conductor as a proxy for the current just beneath the surface,

a feature not afforded by round wires. This experiment became an undergraduate

project by Anne Blackwell, who created the sensor and performed the experiment,

and I was responsible for the computation, analysis, some data taking, and most

of the text. We have used the ‘Silvester method’ [84] to generate the currents

in every trap MATLAB simulation, unless explicitly using point currents. I am

especially proud of the deep dive required for finding a numerical approximation

1Blackwell, A. E., Rotunno, A. P., & Aubin, S. (2020). Demonstration of the lateral AC skin
effect using a pickup coil. American Journal of Physics, 88(8), 676-684.

174



 

FIG. 8.1: The cover of the August 2020 issue of American Journal of Physics, featuring
our submission.
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for the counterflow effect threshold (Sec. 8.7.2). I wanted to call this behavior the

Batman effect because of how Fig. 8.8 looks, and now those words are in print.

A major conceptual result of this work is that the principle of similitude allows

us to directly relate our table-top size and kHz frequencies into the atom chip version

at microwave frequencies. We also emphasize the altering of phase across the wire,

due to its effect on our particular application.

One comment I want to make related to this, but beyond the paper’s scope

is about calculating proximity effects between multiple arbitrary wires. I believe

we can get really good simulations of multiple parallel wires when the currents are

in-phase, or out-of-phase as with the image, but I am hesitant as to apply this same

technique to arbitrary phases between wires. We have observed experimentally and

in FEKO that there is some insertion phase-dependent power and further phase

adjustments, which we term the ‘proximity effect.’ In general, the signal which

leads goes on to lead further in phase while losing effective current, and the lagging

signal lags further while gaining current. Additionally, this phase slip effect appears

to vary longitudinally, meaning a 2-D simulation might be incapable of capturing

the full effect.

When attempting to calculate the proximity effect with the Silvester method,

a simple complex rotation on the setup might do the trick, although whether that

should be expressed in the voltage, or the resistance, is not clear to me. I have

toyed around with it, and it might be that simple, but it would be great to know

definitively the proper method of encoding arbitrary phases, augmenting Silvester’s

approach to create a convenient general solution for N wires and their images.

Here is our publication on the AC skin effect, which made the cover of that

month’s American Journal of Physics, shown in Fig. 8.1.
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8.1 Abstract

We present a simple demonstration of the skin effect by observing the current

distribution in a wide rectangular strip conductor driven at frequencies in the 0.25-

5 kHz range. We measure the amplitude and phase of the current distribution

as a function of transverse position and find that they agree well with numerical

simulations: The current hugs the edges of the strip conductor with a significant

variation in phase across the width. The experimental setup is simple, uses standard

undergraduate physics teaching laboratory equipment, and is easy to implement as

a short in-class demonstration. Our study is motivated by modeling AC magnetic

near fields in the vicinity of an atom chip wire.

8.2 Introduction

While direct current (DC) flows uniformly through a conductor, a time-varying

or alternating current (AC) travels preferentially along the skin of a conductor.

Interactions between the alternating current, the associated magnetic field, and

the induced electric field create transverse spatial variations in both the current’s

amplitude and phase. This behavior defines the skin effect, which has been known

since the late 19th century [85, 86, 87, 88, 89, 90, 91, 92], and the current distribution

has been characterized for various wire profiles. However, with the exception of a

cylindrical conductor of circular cross section (i.e. round wire), numerical approaches

[93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105] and approximations [106,

107, 108, 109, 110, 111] are required to determine the current distribution.

Primary interest in the skin effect concerns the increase in AC resistance due

to the effective decrease in wire cross sectional area. For example, a 1 mm diameter

copper wire with a 1 GHz AC current increases its resistance to about 2.6 Ω/m,
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FIG. 8.2: Skin effect simulations for a 5 kHz AC current of 1 A magnitude in our strip
conductor (80.1 mm wide, 0.63 mm thick, and conductivity σ = 2.50×107(Ω ·m)−1). (a)
False color maps of the current density J in the strip and magnetic field component Bx
above it (FEKO simulation). (b) Plots of current density magnitude |J | versus position
from edge to middle of the strip for four simulation methods (see Sec. 8.3.2). The black
curve is an analytic prediction in the 1D limit at high frequency. (c) Plots of magnetic
field magnitude |Bx| versus position at a height of 0.8 mm for three simulation methods.
(d,e) Plots of relative phases versus position for J and Bx.
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a factor of 120 compared to DC, while decreasing the self-inductance by a similar

factor.2 At high frequencies, braided and Litz wire can help mitigate the skin effect,

and printed circuit board designs must account for this effect. To this end, much

of the research on this topic predicts and measures bulk observables, such as AC

resistance as a function of frequency [94, 97, 105] or wave penetration depth [113].

In contrast, our interest in the skin effect concerns the associated AC magnetic

field in the vicinity of a ribbon-like wire. In our research on AC Zeeman forces, we

manipulate ultracold atoms with radio-frequency (RF) magnetic near fields gener-

ated by currents in the microfabricated 100 µm wide traces of an atom chip [44, 81].

While probing such µm-scale RF fields is challenging [114], basic near field predic-

tions involving the skin effect can be tested experimentally with lower frequencies

at the mm-scale.

In a ribbon-like conductor, with a rectangular cross section that is much wider

than its thickness, the skin effect tends to concentrate the current along the two

edges of the ribbon (see Fig. 8.2(a)) and is referred to as the lateral skin effect.

Notably, the current density does not hug the edges of the ribbon as tightly as in a

bulk conductor (the traditional skin depth), and does not vary appreciably over the

thickness of the ribbon.

In this paper, we present a simple method for probing the current distribution

and phase due to the skin effect in a ribbon-like conductor. An amplified pickup

coil detects the current distribution in the conductor by measuring the amplitude

and phase of the AC magnetic near field just above the conductor. Our experi-

mental scheme requires only standard lab equipment and is sufficiently simple for

implementation as a classroom demonstration or as an undergraduate lab exercise.

Also, we compare our measurements with predictions from several numerical models

2This calculation was done using formulas from the paper of G.S. Smith [112]. The formulas
are the following (they are approximations for the high frequency limit, i.e. wire radius � skin
depth): RAC

RDC
= 1

2
r
δ , LAC

LDC
= 1/(0.5 ∗ rδ ), with δ =

√
2/σµω.
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of varying complexity and dimensionality. Fig. 8.2 shows the current density and

magnetic near field predictions for four models, which largely agree with each other.

Our experimental method works best for ribbon-like conductors, which generate

a one-dimensional spatial variation of the current density, so long as the skin depth

is larger than the conductor thickness. Our ribbon conductor dimensions fall in this

lateral skin effect regime for all of the frequencies that we consider. Our method is

reminiscent of the one developed by Tsuboi and Kunisue [115] for analyzing magnetic

fields produced by large AC currents in thin conducting plates.3 Recent work has

measured the skin effect in a stripline transmission line [116] and in a rectangular

conductor at high current [117, 118]. In contrast, Ampère’s law and cylindrical

symmetry guarantee that for a round wire the external magnetic field is unaffected

by the radial current distribution within it. In this case, direct measurements of

the current density redistribution due to the skin effect must use an internal probe,

such as neutrons [119], NMR [120], a liquid [121] or a segmented [113] conductor,

to name a few.

This paper is structured as follows: In section 8.3, we present the relevant

electromagnetic theory and numerical approaches, followed by details of the exper-

imental method in section 8.4. We present and compare our measurements of the

current and magnetic field distributions with simulations in section 8.5 and con-

clude in section 8.6. The appendices provide additional details on the calibration

procedure and also review analytic expressions for the skin effect and its phase

distribution.

3We learned of this work after submission of the manuscript.
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8.3 Theory

A straightforward classroom exercise is to take the curl of Faraday’s law, com-

bined with Ampère’s law and Ohm’s law, to arrive at

∇2 ~J = σµ
d ~J

dt
= iσµω ~J =

2i

δ2
~J (8.1)

where ~J = J(x, y)eiωtẑ is the longitudinally directed complex current density at

angular frequency ω, in a conductor of conductivity σ and magnetic permeability

µ. The equation can be written in terms of a single constant, the skin depth δ =√
2/σµω, which sets a natural length scale for variations in current density. The

diffusion relation in Eq. 8.1 gives two gifts: First, it directly shows that faster

changes in the driven current create stronger spatial curvature of this current over

distances of order δ. Second, the sole dependence of Eq. 8.1 on the skin depth

δ gives rise to the principle of similitude [105, 122], which states that the current

distribution in two different wires will be the same if they have the same dimensions

in units of δ. This allows for scaling of solutions to different sizes and frequencies.

For example, an 8 cm wide pure aluminum strip (σ = 3.77 × 107(Ω · m)−1) [123]

with a thickness of 0.63 mm at 2.6 kHz (δ=1.6 mm) will have the same current

distribution when re-scaled as a 40 µm wide copper trace with a thickness of 0.32

µm at 6.8 GHz (δ = 0.8 µm).

The round wire admits the only known exact analytic solution to Eq. 8.1 in

a finite volume [112]. 4 The round wire solution for the current density is given

by J(r) = CJ0( (1−i)r
δ

), valid at all frequencies, where r is the radial coordinate,

J0(r) is the Bessel function of the first kind, and C is a normalization constant.

In the high frequency limit (δ � R for radius R), this solution reduces to J(r) '
4The infinite half-space conductor can also be solved analytically [124]
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Jmaxe
−(1+i)R−r

δ for r ' R, with Jmax the current density at the edge of wire. Notably,

this example shows that the phase of the current distribution also varies with r

across the conductor, a fact that is often overlooked in discussions of the skin effect.

Specifically, the phase wraps by 2π for every δ of penetration into the wire as its

amplitude decreases by 1/e. N.B.: At a given time, the current flow is not all in the

same direction.

A ribbon-like conductor, with thickness 2T much smaller than the width 2W ,

is in the lateral skin effect regime for δ � T [107]. In this case, the current distri-

bution falls off from the two ribbon edges to a finite value in the middle with a 1/e

characteristic decay length λ that is larger than the skin depth δ. While the fall off

does not have a closed form, at low frequency (δ2 > WT ), it is roughly polynomial,

while at high frequency (δ2 < WT ) it is more exponential-like. In the very high

frequency limit (δ2 � WT ), the lateral current distribution has an analytic form

(see Appendix 8.7.1), which is plotted in black in Fig. 8.2(b). Notably, the phase

also varies across the conductor width, but less so than in the round wire case (see

Appendix 8.7.2 and Fig. 8.10).

We have provided a supplemental online animation which illustrates the time-

evolving nature of the current density’s phase and amplitude across a wide range

of frequencies. The lateral current density is shown to advance by rotating around

the position axis in complex space (as in Fig. 8.3(e)). The instantaneous amplitude

is projected onto the real axis to show the measured value. Generally, the phase

(and current) at the edges leads the current at the center of the strip. At very high

frequencies, the total current lags 90◦ behind the near-DC phase (and current).
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FIG. 8.3: Visual explanation of the AC skin effect at low frequency in a round wire.
(a) Plot versus time of the input current, associated quasi-static magnetic field B, and
the first order contributions to the induced EMF and eddy current ∆J . (b) Quasi-static
magnetic field B (blue) due to a uniform AC input current density J (black arrows)
versus oscillation phase. (c) First order −dB/dt contribution (red) to the induced EMF
from (b) versus phase. (d) Induced eddy current density ∆J (orange arrows) from EMF
in (c). (e) Complex-plane representation of the uniform input current density J , the
first order eddy current density ∆J contribution from (d) at fixed x, and resulting total
current density Jtot (magenta) at various phases.

183



8.3.1 Pedagogical Explanation

We present a pedagogical explanation for the AC skin effect in Fig. 8.3 by

expanding on an approach given by Zangwill [125]. The reason that an AC current

hugs the skin of a conductor is because the driving current creates a magnetic field

which is largest at the edge, which in turn generates opposing eddy currents. The

net result is a current distribution that is largest in amplitude at the skin, and out

of phase with the source. To demonstrate further, we begin by considering a round

wire (radius R) driven by a low enough frequency AC current such that the skin

effect is a small perturbation on the uniform current distribution (i.e. δ � R).

We can use the following steps illustrated in Fig. 8.3 to calculate the first order

correction to a uniform input current distribution J with a low frequency ω.

(a) shows the sinusoidal time dependence of the uniform input AC current, its

associated magnetic field B, the first order contribution to the induced electric

field ~∇× ~Eind = −d ~B/dt, and the resulting eddy current ∆J = σEind.

(b) shows the uniform input AC current density J = J0 sin(ωt) and its in-phase

quasi-static magnetic field B = B0 sin(ωt). The field B0 = µJ0r/2 increases linearly

outwards from the center.

(c) shows the spatial dependence of −dB/dt = −ωB0 cos(ωt), which then generates

an induced electric field Eind (first order) via Faraday’s law.

(d) shows the eddy current distribution ∆J generated by Eind = µJ0ω(r2/4) cos(ωt)

along the wire axis. Applying Ohm’s law, we obtain the first order correction to

the current density ∆J = (J0/2)(r/δ)2 cos(ωt), which increases quadratically from

the wire center.

(e) shows the resulting total current density Jtot from the quadrature sum of the

input current J and the first order correction ∆J .
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Thus, to first order the AC skin effect results in a current density Jtot that

varies radially in magnitude as 1 + (r/δ)4/8 and radially in phase as well. As the

drive frequency ω is increased, higher order contributions in (r/δ)2 must be included.

The physics is similar for a strip conductor, however the computation of Jtot is more

involved.

8.3.2 Simulations

Numerical approaches are required for calculations of Jtot = J(x, y) with an

arbitrary conductor profile, and often begin by converting Eq. 8.1 into an integral

equation [84],

J(x, y) = JDC −
i

πδ2

∫∫
A
J(x̃, ỹ) ln

√
(x− x̃)2 + (y − ỹ)2dx̃dỹ (8.2)

where the JDC term is the uniform current density expected for a DC current. The

second term generates the skin effect by which the strip’s self-inductance redis-

tributes the current in the wire.

We compute J(x) using four different methods and then calculate the corre-

sponding x-component of the magnetic near-field Bx(x, yh), evaluated at the effective

height yh of our pickup coil. Models which consider vertical extent of J show less

than a part in 103 variation vertically for our parameters, and this extent is averaged

over for J(x) values.

We use two commercial electromagnetic solvers to compute J(x) and B(x, yh).

FEKO uses a method of moments (MoM) approach to solve a finite-length model

of our strip, giving the only longitudinal current description, but the current sheet

model gives no vertical information. Flux uses a finite element method (FEM) to

solve a 2D transverse cross section of the strip, without longitudinal information.5

We have also directly implemented two numerical algorithms that model an

5Both FEKO and Flux are distributed by Altair Inc.
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infinite length strip in the transverse plane. The first algorithm is by P. Silvester

[84] and solves Eq. 8.2 by decomposing the strip cross section onto a Cartesian grid

of square dxdy elements, and calculating the mutual induction between them. The

second algorithm by V. Belevitch et al. [111] uses a flat line of current expanded

in even polynomial powers to solve the same equation (See Appendix 8.7.1 for a

summary of this method).

We find that the four numerical models give comparable results for phase and

amplitude of the current density J(x) and magnetic field B(x) (see Fig. 8.2). Three

of the models give very similar results, but we find that the FEKO phase results

deviate somewhat from the others and depend on the discretization mesh geometry.6

We note that the phase offsets of each model in Fig. 8.2(d, e) have been adjusted

so that the phase over the center portion of the strip corresponds to 0◦. In the case

of FEKO, the small contribution to the AC magnetic field from the supply wires is

subtracted out in Fig. 8.2(c, e).

8.4 Experimental Method

We measure the AC current distribution J(x) (in A/m) laterally across a thin

aluminum strip via the AC magnetic near-field that it produces at the surface of

the conductor. We use a lab-built pickup coil located just above the strip to sample

the AC magnetic field via the voltage induced in the coil.

The basic experimental set-up (see Fig. 8.4(a) and (d)) consists of a thin strip

of aluminum driven by a sinusoidal current source. The pickup coil is scanned

transversely across the surface of the conducting strip, and its induced emf signal

6Older versions of FEKO (before 2019) appeared to use a pseudo-random arrangement of mesh
elements, which led to overall continuous and comparable results. Newer versions use regions of
aligned rows of uniform triangle mesh elements, and we observe deviations, such as those evident
in the amplitude and phase at the center of the strip in Fig. 8.2, occurring at the borders between
these uniform regions.
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FIG. 8.4: Experimental system. (a) Experimental setup showing the aluminum strip,
AC current source, Hall effect current sensor, and the the pickup coil, which is scanned
in the x-direction. Changes in amplitude and phase between the amplified Vsig and the
total current can be seen by plotting both on an oscilloscope. (b) Schematic diagram of
the pickup coil. All dimensions have a nominal error of 0.05 mm. (c) The end portion of
the pickup coil, showing the milled center channel and length scale. (d) A photo of the
table-top set-up. Arrows (red) indicate current direction and magnitude. The pickup coil
PCB is shown with two twisted-pair signal wires attached at the top: final measurements
were conducted with only one twisted-pair, which was connected directly onto the pickup
coil loop for better fidelity and lower noise.
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is sent to a battery-powered amplifier (gain ∼ 104 with 10 kHz bandwidth, based

on two OP27E op-amp gain stages). The output of the amplifier is then displayed

on an oscilloscope, along with the signal from an isolated Hall sensor (LEM model

HX 10-NP) that monitors the total current through the strip. A series ammeter

provides an additional rms measurement of the AC current.

The aluminum alloy strip has width 2W = 80.1(1) mm and thickness 2T =

0.63(1) mm. We measure its DC conductivity to be σ = 2.50(6) × 107(Ω · m)−1

with a four-point measurement. The aluminum strip is mounted on medium density

fiberboard (MDF) with double-sided tape, and electrical connections soldered on

washers are bolted to the strip with through holes at its two ends. The strip is

about 0.9 m long, but could be much shorter, since the pickup coil measures very

little variation in signal along the strip’s length, except at the ends.

We direct an AC current with amplitude 1.85 A (1.3 Arms) through the strip

using a voltage controlled current source driven by the sinewave output of a function

generator. At near-DC frequencies, the current density is essentially uniform at

JDC = 1.85 A/8 cm ≈ 23.1 A
m

, which corresponds to a surface magnetic field of

BDC ≈ 0.145 G. We use drive frequencies in the range of 0.25-5 kHz. Our current

source (lab-built, based on a LM675 op-amp) operates up to 5 kHz, while below

250 Hz the small pickup coil signal is too noisy.

The amplified pickup coil is very sensitive to environmental noise, such as RF

communication signals (e.g. Bluetooth, WiFi) and the 60 Hz noise (and associated

harmonics) emanating from nearby electrical devices. We found that for low noise

measurements, the overhead fluorescent lights and cellphones had to be turned off

while taking data. Alternatively, in a noisy environment, directing the battery-

powered amplifier signal to a lock-in amplifier could provide a cleaner signal.

Care was taken to route the AC current supply wires away from the pickup

coil to minimize crosstalk. We suspect that the placement of these supply wires on
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one side of the conductor may contribute to the slight asymmetry in the current

distribution observed in Fig. 8.6.

8.4.1 Pickup coil

The pickup coil (Fig. 8.4(b–c)) consists of a machined, highly elongated rect-

angular copper loop of external dimensions 114 mm × 1.85 mm with an inner gap

measuring 110.6(1) mm × 0.38(5) mm, centered at a height of 0.80(5) mm. The

base for construction was a 114 mm × 79 mm double-sided copper-clad electronics

prototyping circuit board (PCB). We initially used two loops on the front and back

in series for higher sensitivity but switched to a single loop for improved spatial

resolution. The PCB construction ensures that the pickup loop is flat in a plane,

and that the two coil planes are parallel.

We machined the PCB into the pickup coil using a desktop CNC milling ma-

chine (Carvey, Inventable Inc.). Bulk copper removal was done with a regular end

mill bit (1/8” fishtail upcut bit), while a specialized 0.1 mm diameter bit (P3.2501)

was used for the regions directly adjacent to the wire loop and within it.

We note that alternative single-turn and multi-turn pickup coils based on wrap-

ping a thin wire around a plastic card were effective at producing a signal. However,

the signal amplitude showed a significant asymmetry when the coils were rotated

180◦ around the vertical y-axis. The PCB-based coil minimizes this asymmetry.

8.4.2 Measurement Theory

According to Faraday’s law, the voltage induced in the pickup coil by the mag-

netic near-field ~B = ~B(x, y)eiωt is given by

Vcoil = − d

dt
( ~A · ~B) = −iωABx (8.3)
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where ~A = Ax̂ gives the effective area of the pickup coil. In order to relate current

density J(x) to the induced pickup coil voltage Vcoil, we note that ~B(x, y) is given

by the Biot-Savart integral in the quasi-static limit:

~B(x, y) =
µ0

2π

∫
J(x′)(−yx̂+ (x− x′)ŷ)

(x− x′)2 + y2
dx′ (8.4)

However, in the limit that the pickup coil is at the surface of the aluminum strip

(i.e. y → 0), then ~B(x) ' µ0J(x)x̂/2 from Ampère’s law for |y| � δ. Figure 8.6

shows that the current distribution J(x) and the horizontal component Bx(x), less

than a millimeter from the surface, are proportional to each other (by µ0
2

) near the

center of the conductor, but deviate from each other at the edges, as shown in Fig.

8.5.

Therefore, across the middle of the conductor, we have to a good approximation

Vcoil(x) = −iωABx(x) ' −iωAµ0

2
J(x) (8.5)

Since we measure an amplified signal Vsig ≈ Vcoil × 104, calibrations relating Vsig to

Bx and J are required.

8.4.3 Calibration

We used a two-part calibration procedure. First, the frequency-dependent gain

of the coil-amplifier system was examined using the pickup coil to measure the

magnetic field near an aluminum rod of circular cross section. For a known current in

the rod, the drop in signal at higher frequencies can be attributed to the bandwidth

of the coil-amplifier system, independent of the skin effect in the rod. Second, we

measure the field above the rectangular strip at a low frequency (250 Hz), where

the current is nearly evenly distributed. Averaging over the the middle region of a
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FIG. 8.5: Plot of the magnetic near field Bx (blue) and current density J (red) multiplied
by µ0/2 to demonstrate the close relationship between the two quantities. Values are for 1
A magnitude at 5 kHz, where Bx is taken at yh = 0.8 mm. Dashed vertical lines indicate
the relative magnitude difference between the two values. We see excellent agreement
in the central region, with less than 1% deviation. The difference grows towards the
edges, where it exceeds 20%. The relative phases of J and Bx (not shown) have similar
agreement, within ≈ 1◦ across the center, and diverging to about 15◦ at the edges.
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known current density allows us to relate the amplified voltage Vsig to the known

average current density and the surface magnetic field strength. Measurements of

Vsig are divided by the linear ω scaling, corrected for frequency dependent amplifier

gain, and multiplied by the voltage-to-J and voltage-to-B factors to produce real

values of J and Bx for the data in Figs. 8.6 and 8.7. The full calibration procedure

is detailed in Appendix 8.7.3.

Phases are measured using the time delay between the zero crossings of the

Hall current sensor and Vsig. Phase is presented relative to the x = 0 center phase

(≡ 0◦), since pickup (−90◦), inversion (180◦), and bandwidth (unique to frequency)

were not studied with sufficient precision.

8.5 Results

The main results of this paper are shown in Figs. 8.6 and 8.8, where we plot the

amplitude and phase, respectively, of the pickup coil signal versus transverse position

x. The amplitude measurements in Fig. 8.6 clearly show the AC skin effect: at high

frequency (5 kHz) the current is highest at the edges of the conducting strip, while

at a much lower frequency (250 Hz), the current density is essentially uniform. We

use two vertical axes in Fig. 8.6 to show the surface magnetic field Bx(x) (left) and

the current density J(x) (right) that we convert from the pickup coil signal based on

our calibration procedure (see Sec. 8.4.2 and appendix 8.7.3). We have also plotted

the theoretical expectations for the current density (solid) and surface magnetic

field (dashed), and find good agreement with the data in the center portion of the

strip. For completeness, we also present all of our measured data in Fig. 8.7. At

the edges of the strip, the data is lower than the theoretical expectation, possibly

due to high field curvature, or misalignment of the coil in a region with a significant

By component.
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and 5 kHz (blue crosses) for 1.3 A rms of current. The pickup coil measurements are
given in terms of the calibrated surface magnetic field Bx (left axis) and calibrated current
density J (right axis). The theoretical current density predictions (solid lines) and the
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Theoretical current density values reach 62.3 A/m at the edge. Error bars are smaller
than the symbol size and are omitted.
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Freq (Hz) δ (mm) WT/δ2 λJ/δ λBth
/δ λBexp/δ

250 6.37 0.31 2.3 1.8 [no fit]
500 4.50 0.62 3.2 3.3 2.9 (1.3)
1000 3.18 1.25 4.4 4.8 4.8 (0.3)
2000 2.25 2.49 5.2 6.0 5.6 (0.5)
3000 1.84 3.74 5.1 6.3 5.5 (0.9)
4000 1.59 4.98 4.8 6.3 5.8 (1.0)
5000 1.42 6.23 4.6 6.3 7.0 (1.1)

TABLE 8.1: Comparison of the decay constant λ, i.e. the lateral skin “width,” for
theory and experiment in units of the skin depth δ for data in Fig. 8.7. The theoretical
values for the current density and surface magnetic field (at the probe) are given by λJ
and λBth

respectively. The experimental value for the surface magnetic field is given by
λBexp

, with one standard deviation given in parentheses.

The amplitude of the current density and associated surface magnetic field

follow a roughly exponential fall off (with an offset) from the edges towards the

middle of the strip. We define the characteristic decay constant λ as the distance

from the maximum magnitude position to the position where the magnitude falls

to 1/e above the minimum value at the center. Table 8.1 shows λ for the data at

all the frequencies shown in Fig. 8.7. The theoretical values for the current density

and surface magnetic field, λJ and λBth , are extracted from numerical simulations

(Silvester method [84] for Table 8.1). For interpolation of the data, both a fourth

order polynomial and an exponential function yield the same 1/e values for λBexp .

We note that the fall off constant λ is significantly larger than the skin depth δ, as

expected for the lateral skin effect regime. For example, across the few kHz region

of our data, we find that λ ∼ 5δ. Generally, λ depends on the geometry of the strip,

which we parameterize by WT/δ2 [107].

In Fig. 8.8, we plot the phase of the pickup coil signal (relative to the x = 0

phase) versus position x across the strip for a 5 kHz current. The data clearly show

that the phase of the current density varies by more than 30◦ across the strip, in

tandem with the magnitude. In other words, for short portions of the AC cycle, the

current in the center is going in the opposite direction to the current on the edges of
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the strip. The theory curve for the phase agrees reasonably well with the data over

the breadth of the strip. Past the strip edges, the overall pickup coil signal is weaker,

and the data deviates from theory, possibly due to interference in the pickup coil

from other parts of the apparatus. Furthermore, in contrast with the magnitude,

the phase across the conductor, when plotted, displays a modest “bump” at the

center of the strip. This non-monotonic behavior means that for brief moments in

the cycle, the current at the center and along the edges of the strip are going in

the same direction, but the current between these regions is going in the opposite

direction. This counterflow behavior is examined in detail in Appendix 8.7.2.

8.6 Conclusion

We have directly observed the AC skin effect at kHz frequencies in a rectangular

aluminum strip. We have shown experimentally that the current increasingly hugs

the edges of the strip as the frequency increases, and that the phase of the current

density varies significantly across the strip. We have calculated the theoretical

distribution of the current across the strip by four different methods and find good

agreement between these and the data, with modest deviations at the edge.

Conveniently, our simple experimental setup is well suited to an in-class demon-

stration. The setup requires standard laboratory equipment (analog controlled cur-

rent source, function generator, op-amp-based amplifier, current sensor, and oscillo-

scope) and a lab-built elongated pickup coil. A possible upgrade to the pickup coil

is to use two perpendicular elongated coils so that Bx and By can be measured si-

multaneously. Such a pickup coil would provide more information when probing the

edges of the strip, as well as the circular polarization in the case of phased currents

in multiple strips.

This kHz-level work is a stepping stone towards accurate engineering of GHz-
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relative to the center value at x = 0. Errors are smaller than the symbol size and are
omitted.

197



level microwave magnetic near-fields with much smaller conducting strips (∼ 100

µm) on an atom chip. Based on the principle of similitude, the agreement between

theory and experiment in this kHz work provides confidence that our numerical

computation methods for the AC skin effect and related magnetic near field can be

extended to microwave frequencies.

8.7 AC Skin Appendix

8.7.1 Analytic Forms

In the interest of supplying useful analytic functions to the experimenters with

similar flat wires, here we reproduce two functions from the paper by Belevitch et

al. [111] for the case of a flat, 1-d ‘ribbon’ conductor of width 2W and thickness

2T , where W � T . Solutions assume the form of an infinite sum of even powers of

the normalized x coordinate s = x
W

,

J(s) =
N∑
n=0

Cn · s2n (8.6)

where increasing the order N of the sum yields higher accuracy. To simplify some

expressions Belevitch et al. [111] use the dimensionless variable k = iωσµWT
π

= i2WT
πδ2

and DC linear current density JDC = Iext/2W . In our experiment, |k| ≈ 0.2 at 250

Hz and |k| ≈ 4 at 5 kHz. This method’s first-order (N=1) solution yields a complex

quadratic equation:

J(s) =
1 + k + ks2

1 + 4
3
k
· JDC

which applies only for sufficiently low frequencies (i.e. |k| < 0.1). For larger |k|

more terms in Eq. 8.6 must be included.

In Fig. 8.9 we plot Cn terms in the sum of Eq. 8.6 for different values of |k|
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with N = 500. Each segmented line connects consecutive Cn terms in sequence,

beginning in the lower right with the C0 or DC value, and ending for converged

sequences with many values near the origin, contributing very little. Solutions

require many powers of s for convergence at high frequency, while only a few are

needed for low frequency convergence. At low frequencies (e.g. |k| = 0.02), similar

to the discussion in Sec. 8.3.1, the primary contribution is largely real, with a small

imaginary s2 contribution. The leading C0 terms describe a semi-circle of diameter

≈ 0.36 ≈ 1− 2
π
, a feature also described in Casimir and Ubbink’s analysis [86].

In the high frequency limit of a thin ribbon conductor, e.g. |k| � 50, Belevitch

also provides an exact solution for the magnitude of the current distribution:

|J(s)| = 2

π
√

1− s2
· JDC (8.7)

This function appears, scaled to our parameters, in Fig. 8.2. This expression also

shows that in the center of a very thin strip, the minimum J will only drop to

2/π ≈ 0.63662 times the DC value. Our other simulations reinforce the trend toward

this curve at higher frequencies. The phase in the high frequency limit approaches

a uniform distribution, lagging the driving current by 90◦ (for a very thin ribbon).

8.7.2 The Counterflow Effect

Due to the phase-shifting of the skin effect, the dominant outer current always

precedes the rest of the current (see Fig. 8.10). However, above some frequency, the

phase in the center slightly precedes the area surrounding it. As seen in Fig. 8.8, a

slight bump in phase is present at the center of the strip.

As shown in Fig. 8.10 (3, 4, and 5 kHz curves), for a small portion of time

(about 1◦, twice per cycle), the current in the center and edge are going in the same

direction, but currents at points between are flowing in the opposite direction, near
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the zero crossing of a current oscillation. Our calculations show that this effect

begins at |k| ≈ 2.0514, which corresponds to about 2.6 kHz in our experiment. The

effect grows and then diminishes at very high frequencies, and we predict no higher

order phase reversals.

We find that we are able predict this crossing point analytically, using the

Belevitch model. Using s = x
W

, the current at any point can be represented by the

expression

J(s) = a(s) + ib(s) =
N∑
n=0

(
an + ibn

)
s2n
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with phase φ given by

φ = tan−1

(
b(s)

a(s)

)
The phase bump appears when the curvature of φ at s = 0 flips from negative to

positive. Setting d2φ/ds2 = 0, we obtain at s = 0 : (a prime represents a derivative

with respect to s)

a′′

a
=
b′′

b

where we have used the fact that dφ/ds = 0 at s = 0 due to the even symmetry of

J(s). We can translate the above conditions into statements about relative curvature

of the real and imaginary parts of the current density at the center:

– If a′′

a
> b′′

b
, the center phase always follows locally.

– If a′′

a
= b′′

b
, the center is in phase with its surroundings.

– If a′′

a
< b′′

b
, the center phase precedes locally.

Using the summation J(s) = C0+C1s
2+C4s

4+. . . we can identify C0 = a+ib|s=0

and C1 = 1
2!

(a′′+ ib′′)|s=0. We only need to compute two complex terms of equation

8.6’s solution, C0 and C1, to know whether the current has this phase reversal at

the center. The equality condition a′′/a = b′′/b implies that C0 and C1 lie on a line

through the origin (see dashed line in Fig. 8.9). Numerically, we find this happens

for |k| = 2.0514 ≈ 2. The frequency required for this central phase reversal effect

is then roughly fφ & 1
WTµσ

. At higher frequencies, the effect is at most only a few

degrees, which is sufficient for observation (see Fig. 8.8).

8.7.3 Calibration

In principle, we can extract values of J(x) or B(x) via Eq. 8.5, a measurement of

Vcoil(x), the frequency ω, and the coil area A, but this approach is problematic. First,

the coil area is not well defined, because the coil’s enclosed area is comparable to the
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wire area (see Fig. 8.4(b–c)). Second, the signal we measure on the oscilloscope Vsig

is also modified by the bandwidth of the amplifier. Finally, Vcoil may have additional

magnetic gradient dependence or ω-dependence beyond the linear ω scaling in Eq.

8.3.

We resolve these difficulties by using a collective model for the gain of the

pickup coil system (coil, amplifier, etc.) that relates Vsig to the current density and

magnetic field at the surface:

J(x) =
αJ(ω)Vsig(x)

ω
, and Bsurf (x) =

αB(ω)Vsig(x)

ω

The proportionality constants αJ(ω) and αB(ω) are determined via calibration ex-

periments at known J and Bsurf . These two constants also have the same frequency

dependence, so for two different frequencies ω and ω0, we expect αJ(ω)/αJ(ω0) =

αB(ω)/αB(ω0). From this relation, we see that we have αJ(ω) = αJ(ω0)(αB(ω)/αB(ω0)),

so we can obtain αJ(ω) from measurements of αJ(ω0) and αB(ω)/αB(ω0).

We measure αJ(ω0) at a very low frequency with ω0 = 2π×250 Hz, where the

AC skin effect is near negligible, yet high enough in frequency to be visibly picked

up by the coil. The current density J(x) is near-constant across the middle of the

strip as seen in Fig. 8.6.

We determine αB(ω)/αB(ω0), i.e. the frequency dependent gain of the pickup

coil system, by measuring Vsig at the surface of an aluminum rod of circular cross

section driven by a known AC current for different frequencies. Due to its geom-

etry, the external magnetic field of the rod is frequency independent (unlike the

strip), so we can use αB(ω)/αB(ω0) = (Vsig(ω0)/ω0)/(Vsig(ω)/ω) to determine the

αB(ω)/αB(ω0) calibration ratio.
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CHAPTER 9

Outlook

While I had hyped up the AC Zeeman a bit in the introduction as a revolu-

tionary Swiss army knife, what has been demonstrated so far is a proof-of-principle

search into this new trapping technology. We have performed additional demonstra-

tions like evaporation and the ‘throw and catch’ technique in this two-wire trap, and

it demonstrates the resonant and state-dependent nature we had expected. While

the categorical existence of a trap suggests the motivating theory is sound, we found

a few empirical results which violate expectations. This knowledge gap suggests

we look again at the approximations we have asserted [126], such as Ω � ωrf ,

ω0 − ωRF � ω0 + ωRF , and experimental nuances which need to be grappled with.

This demonstration of a few hundred Hz of trap frequency using < 1 W, and half

second lifetimes, I hope serves as a diving board into any number of more complex

experiments.

We still search for a good rationale for trap losses, which appear to prefer

shedding hotter atoms, but aren’t visible in the |+〉 state, as we had expected. This

points to simple free evaporation, when the ensemble temperature is nearly the

order of the trap depth, as in our case. In addition, we suspect something analogous
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to Majorana losses, spin-flips from trapped into anti-trapped states at the central

zero of the trapping field. At the B± field zero, the coupling Ω goes to zero, and

the detuning δ alone gives the difference in energies. Atoms moving in simple trap

oscillations through this central zero might find themselves re-projected into other

un-trapped states, although we did not directly observe this. I believe a proper

model would be something like the Landau-Zener formula for a harmonic oscillating

Ω coupling instead of linear sweeps over detuning, weighted by the energy curvature

at trap bottom, linear or harmonic to leading order.

Having demonstrated an AC Zeeman trap for a relatively small investment,

we encourage other atom-chip experimenters to consider adding this technique to

their toolbox. One main hurdle is a frequency sweeping, phase-controlled multi-

RF source, but one can use arbitrary waveform generators at MHz frequencies or

specialized commercial products like we used. In terms of power consumption, we

observed trapping nearly 100 µm from the chip using 0.1 Watts per ≈ 8 Ω trace

(usually 400 mW though), and less power would be needed in low-gravity [58] or

with inverted chip orientation (opening upwards). Further, microstrip transmission

lines allow more microwave power for inter-manifold state-selective trapping, and

counter-propagating microwave fields can create an ACZ standing wave to confine

atoms in an axial ‘microwave lattice.’ Shifting phase in this microwave lattice can

shift atoms along the axial direction, adding distance and an enclosed area to an

AC Zeeman trapped atom interferometer.

In terms of spin-selection, we have shown here polarization selection between the

F+ = 2 and F− = 1 manifolds, using only one AC Zeeman state of each manifold.

Using microwaves, we can target two-level inter-manifold transitions by polariza-

tion and resonance, allowing for atoms in any hyperfine state to become a high- or

low-field seeking AC Zeeman state [44]. While the two-trace geometry precludes

it, other geometries generate both B+ and B− traps co-located outside the chip,
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moving differentially away from each other as the phase is varied. Additionally, ar-

bitrary independent trap movement is available using multiple microwave transitions

sufficiently detuned from one another.

9.1 The Proposed Interferometer

An atom interferometer can be constructed using a single frequency RF in

combination with a three-trace trapping geometry from Sec. 6.4.3 and Fig. 6.10.

Beginning with one of the clock states |2,+1〉 &|1,−1〉 at 3.23 Gauss,1 one can co-

locate both RF AC Zeeman traps for |+〉 &|+′〉 using red detuning (from Fig. 7.2),

where each state is trapped by opposite polarization B± field. Detuning and power

can be fine-tuned to match trap frequencies in these two traps, a crucial step. From

a pure population, an RF and µw two-photon π/2 pulse [127](spatially a saddle-

point using the same chip wires) can put equal populations in the two clock states,

each in a different trap. Then, we separate these |+〉 &|+′〉 traps (seeing opposite

RF polarizations) differentially side-to-side (vis-a-vis Fig. 6.10) by shifting phase

from 180◦. While we employ linear phase sweeps, different separation protocols can

improve interferometric performance [128]. After some interrogation time, possibly

with controlled axial motion, these separated traps ares are recombined spatially,

and a second π/2 pulse is applied. To read the output states, a DC Stern-Gerlach

field would move them the same direction, so we require a differential B+/B− gra-

dient to separate them, or an ARP sweep to a different value of mFgF . While there

remains ≈ 6.8 GHz of energy separation in the arms, any noise in background mag-

netic field is made common-mode at ‘magic’ magnetic field values, e.g. 3.23 G for

87Rb. The states probe fields at distances on par with trace separation or enclose

1Experimental conditions may preclude operation at such a low frequency. The scheme proposed
here would work at higher field, simply losing magnetic insensitivity.
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an area with trace length, using an axial ACZ lattice as well.

This is just a toy example, but the spin-targeting ability of the AC Zeeman

effect can enable new categories of experiments in existing hardware, as is already

happening in trapped ion experiments [129, 130, 131, 132]. Stepping beyond a

spin-targeting force or microwave field, this spin-targeting trap, we think, is a trans-

formative tool for chip-based atomic physics.

9.2 Chip Design

The next generation of chips to continue this work will need decent power

coupling near 6.8 GHz. Other atomic isotopes and species offer different target

ranges, so designing for broadband 0-20 GHz might be a good target range. This

approach requires a ground plane forming a microstrip transmission line, which we

wrote a separate publication about [80], and is largely an engineering hurdle. We

employ many 3-D electromagnetic simulations in FEKO to simulate designs and

building blocks toward the goal of a microwave AC Zeeman trapping chip.

I have done a handful of early simulations, but the bulk of our lab’s work on

atom chip design and can be found in forthcoming Ph.D. theses from Shuangli Du

and William Miyahira, or the undergraduate theses of Chloe Lewelling [133] and

Kameron Sullivan [134] (as of 2021).

9.3 Questions

I also want to voice some remaining questions which seem within reach at the

moment, and may have answers known to other physicists, but perhaps mark a new

unknown endeavor for a future graduate student or post-doc in this field.

• What causes number loss from the AC Zeeman trap, especially at low detuning?
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• Is there an extension to Landau-Zener transitions, where we oscillate δ across or

near resonance? What about oscillating Ω as thermal atoms sample the (linear,

parabolic, and beyond) gradient at the trap bottom?

• Do transitions analogous to Landau-Zener occur for off-resonant non-adiabatic

sweeps?

• Empirical spin mixing showed that higher power preserved states longer, but in

the trap, higher power has lower lifetime, why the apparent paradox? (Possible

explanations: gravitational trap sag with lower power brings trap center off the

zero point, or that higher velocities in a tight trap pass more non-adiabatically

through the field zero.)

• How can one quantize the trap energy levels in a quasi-linear/quadratic/beyond

AC Zeeman trap, a precursor to dynamic matter wave simulations? Is it easy nu-

merically in 2D or 3D? This will be important for simulating the phase evolution

of trapped atom interferometers [135].

• Is there a single, simple sweeping procedure for the RF trap hold frequency plus

a microwave field to quickly set up a F+/F− trapped superposition in co-located

traps?

• Can one design a chip around inductively coupled microwaves generating station-

ary traps, as we accidentally performed? (like [136])

• Am I accidentally ‘double dipping’ factors of 1
2

in the AC Zeeman analysis by

taking the rotating wave approximation, when I start with B± fields? Or, using

x̂→ ê++ê−
2

and the RWA? I believe the Ω definition I have adopted might differ

by a factor of 2 from a conventional definition. Explicitly, I define Ω0 = µB|B±|/~

so that each off-diagonal element in the Hamiltonian used is Ω0 · (CG)/2, where
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(CG) is
〈F ′,m′F |gSS±|F,mF 〉

2~ . Keeping the ‘/2’ in the off-diagonal elements matches

interpretation to the Rabi definition in the two-level case.

• What mathematical intuition properly resolves the Hermitian Ω∗eg’s abandoned

polarization flip? Or, how does one properly formulate the inverse S± transition

elements (stimulated emission vs. S∓ absorption) so that it knows about gF ’s

sign? 〈1, 1|S−B+ |2, 2〉∗ ?
= 〈2, 2|S+B− |1, 1〉

• Is there a nice Bloch-sphere picture for three or five levels? [137]

• Can one simply inject complex phases into the Silvester model?

• In the high-frequency limit of the AC skin effect, do the lateral results apply

to the edges of a rectangular conductor? Or is there always magnitude in the

center, as with the linear case?
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APPENDIX A

Five-level Hamiltonian Derivation

This appendix goes with Chapter 3, working through the five-level dressed atom

system to find a time-independent Hamiltonian which we can diagonalize to get AC

Zeeman energy.

In this appendix, I will extend the two-level dressed atom approach into the

five-level ladder-like system of the F+ = 2, being more explicit about the quantum

mechanics.

Let us begin with the bare atomic energies and eigenstates, here for the F+

manifold, which we label as |mF 〉. In this case, we order them from least DC

Zeeman energy to most from the top to bottom row. In this basis, a state |Ψ〉 can

be written as:

|Ψ〉 =



C-2 · e−iω−2t

C-1 · e−iω−1t

C0 · e−iω0t

C+1 · e−iω+1t

C+2 · e−iω+2t


·



|−2〉

|−1〉

|0〉

|+1〉

|+2〉


(A.1)
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where each ωi is Ei/~. We also have the bare state Hamiltonian in this basis:

Ĥ =



~ω-2 0 0 0 0

0 ~ω-1 0 0 0

0 0 ~ω0 0 0

0 0 0 ~ω+1 0

0 0 0 0 ~ω+2


(A.2)

As with the two level case, the interaction between a ground and excited state is

given by 〈e| − µ · B |g〉 where we take gS = 2, ~µ = −2µB
~

~S, ~B = BRF cos(ωRF t)x̂,

~Ωx = µBBRF . From Sec. 3.2, we use the low-BDC Clebsch-Gordan coefficients
√

4
4

(for |2〉 ↔ |1〉 and |−1〉 ↔ |−2〉) and
√

6
4

(for |1〉 ↔ |0〉 and |0〉 ↔ |−1〉).

These values, along with their complex conjugates (all real here, displayed for

the general case), yields an interaction Hamiltonian:

Ĥint = ~



0
√

4
4

Ωx 0 0 0
√

4
4

Ω∗x 0
√

6
4

Ωx 0 0

0
√

6
4

Ω∗x 0
√

6
4

Ωx 0

0 0
√

6
4

Ω∗x 0
√

4
4

Ωx

0 0 0
√

4
4

Ω∗x 0


· cos(ωRF t) (A.3)

Now, taking the combined Hamiltonian into the time-dependent Schrödinger equa-

tion gives

i~
d

dt
|Ψ(t)〉 = Ĥ |Ψ(t)〉 (A.4)
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i~
d

dt



C-2e
−iω−2t

C-1e
−iω−1t

C0e
−iω0t

C+1e
−iω+1t

C+2e
−iω+2t


= ~



ω-2

√
4

4
Ωx 0 0 0

√
4

4
Ω∗x ω-1

√
6

4
Ωx 0 0

0
√

6
4

Ω∗x Ωx

√
6

4
Ωx 0

0 0
√

6
4

Ω∗x ω+1

√
4

4
Ωx

0 0 0
√

4
4

Ω∗x ω+2


·cos(ωRF t)



C-2 · e−iω−2t

C-1 · e−iω−1t

C0 · e−iω0t

C+1 · e−iω+1t

C+2 · e−iω+2t


(A.5)

where with a bit of lazy short hand, the cos term is only on the off-diagonal coupling

terms. Taking the time derivative on a product C · eiωt, and canceling in each

equation the left side’s

(−i2~ωi) · Ci(t) · e−iωit (A.6)

with the diagonal energy elements on the right

~ωi · Ci(t) · e−iωit (A.7)

we obtain the system of equations:

i~e−iω-2t
d

dt
C-2(t) = +C-1(t)e−iω-1t~Ωx

√
4

4
cos(ωRF t)

i~e−iω-1t
d

dt
C-1(t) = C-2(t)e−iω-2t~Ω∗x

√
4

4
cos(ωRF t) +C0(t)e−iω0t~Ωx

√
6

4
cos(ωRF t)

i~e−iω0t
d

dt
C0(t) = C-1(t)e−iω-1t~Ω∗x

√
6

4
cos(ωRF t) +C1(t)e−iω1t~Ωx

√
6

4
cos(ωRF t)

i~e−iω1t
d

dt
C1(t) = C0(t)e−iω0t~Ω∗x

√
6

4
cos(ωRF t) +C2(t)e−iω2t~Ωx

√
4

4
cos(ωRF t)

i~e−iω-2t
d

dt
C2(t) = C1(t)e−iω1t~Ω∗x

√
4

4
cos(ωRF t)

Now, we wish to remove the e−iωit dependence on the left by multiplying by its

inverse (e+iωit) on both sides. This factor introduces new dependence on differences

in ω, which prompts the definition of a double subscripted ωab = ωa−ωb. Performing
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this, we come to the system

i~
d

dt
C-2(t) = +C-1(t)e−iω-1-2t~Ωx

√
4

4
cos(ωRF t)

i~
d

dt
C-1(t) = C-2(t)e+iω-1-2t~Ω∗x

√
4

4
cos(ωRF t) +C0(t)e−iω0-1t~Ωx

√
6

4
cos(ωRF t)

i~
d

dt
C0(t) = C-1(t)e+iω0-1t~Ω∗x

√
6

4
cos(ωRF t) +C1(t)e−iω10t~Ωx

√
6

4
cos(ωRF t)

i~
d

dt
C1(t) = C0(t)e+iω10t~Ω∗x

√
6

4
cos(ωRF t) +C2(t)e−iω21t~Ωx

√
4

4
cos(ωRF t)

i~
d

dt
C2(t) = C1(t)e+iω21t~Ω∗x

√
4

4
cos(ωRF t)

Now, we perform the Rotating Wave Approximation (RWA), where we make the

substitution

cos(ωRF t) =
e−iωRF t + e+iωRF t

2
(A.8)

and then drop terms which contain in the exponential the sum of two frequencies

(ωRF + ωi) and retain the difference of two frequencies (ωRF − ωi). We are near

the edge of this being a valid assumption when we work at low RF frequencies.

However, this counter-rotating term can be added again later as a Bloch-Siegert

shift, effectively re-dressing the system from far off-resonance [70, 71, 72]. Checking

signs, we examine the product

(
e−iωRF t + e+iωRF t

2

)
· e±iωit (A.9)

Pulling out the minus sign, we flip the sign on the whole term: e∓i(ωRF−ωi)t. Applying
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the RWA, we have:

i~
d

dt
C-2(t) = +C-1(t)e+i(ωRF−ω-1-2)t~Ωx

√
4

8

i~
d

dt
C-1(t) = C-2(t)e−i(ωRF−ω-1-2)t~Ω∗x

√
4

8
+C0(t)e+i(ωRF−ω0-1)t~Ωx

√
6

8

i~
d

dt
C0(t) = C-1(t)e−i(ωRF−ω0-1)t~Ω∗x

√
6

8
+C1(t)e+i(ωRF−ω10)t~Ωx

√
6

8

i~
d

dt
C1(t) = C0(t)e−i(ωRF−ω10)t~Ω∗x

√
6

8
+C2(t)e+i(ωRF−ω21)t~Ωx

√
4

8

i~
d

dt
C2(t) = C1(t)e−i(ωRF−ω21)t~Ω∗x

√
4

8

And, for convenience we define each transition’s detuning δij = ωRF − ωij:

δ-1-2 = ωRF − ω-1-2, δ0-1 = ωRF − ω0-1, δ10 = ωRF − ω10, δ21 = ωRF − ω21

Which leaves us with:

i~
d

dt
C-2(t) = +C-1(t)e+i(δ-1-2)t~Ωx

√
4

8

i~
d

dt
C-1(t) = C-2(t)e−i(δ-1-2)t~Ω∗x

√
4

8
+C0(t)e+i(δ0-1)t~Ωx

√
6

8

i~
d

dt
C0(t) = C-1(t)e−i(δ0-1)t~Ω∗x

√
6

8
+C1(t)e+i(δ10)t~Ωx

√
6

8

i~
d

dt
C1(t) = C0(t)e−i(δ10)t~Ω∗x

√
6

8
+C2(t)e+i(δ21)t~Ωx

√
4

8

i~
d

dt
C2(t) = C1(t)e−i(δ21)t~Ω∗x

√
4

8

We then perform the rotating frame transformation, intending to remove all

explicit time dependence in the new detuning exponential terms by redefining the
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Ci terms. Defining new coefficients C and Delta terms:

C̃-2 = C-2 · ei∆-2t ∆-2 = 0

C̃-1 = C-1 · ei∆-1t ∆-1 = ∆-2 + δ-1-2

C̃0 = C0 · ei∆0t ∆0 = ∆-1 + δ0-1

C̃1 = C1 · ei∆1t ∆1 = ∆0 + δ10

C̃2 = C2 · ei∆2t ∆2 = ∆1 + δ21

We use a different convention later with fewer terms, but this version is equivalent

and follows from this theory section. Plugging these in, we obtain the system

i~
d

dt
C̃-2(t) = +∆-2C̃-2(t) + C̃-1(t)~Ωx

√
4

8

i~
d

dt
C̃-1(t) = C̃-2(t)~Ω∗x

√
4

8
+∆-1C̃-1(t) + C̃0(t)~Ωx

√
6

8

i~
d

dt
C̃0(t) = C̃-1(t)~Ω∗x

√
6

8
+∆0C̃0(t) + C̃1(t)~Ωx

√
6

8

i~
d

dt
C̃1(t) = C̃0(t)~Ω∗x

√
6

8
+∆1C̃1(t) + C̃2(t)~Ωx

√
4

8

i~
d

dt
C̃2(t) = C̃1(t)~Ω∗x

√
4

8
+∆2C̃2(t)

In the C̃ basis, we can re-write the system in a Hamiltonian matrix form:

i~
d

dt



C̃-2

C̃-1

C̃0

C̃+1

C̃+2


= ~



∆-2

√
4

8
Ωx 0 0 0

√
4

8
Ω∗x ∆-1

√
6

8
Ωx 0 0

0
√

6
8

Ω∗x ∆0

√
6

8
Ωx 0

0 0
√

6
8

Ω∗x ∆+1

√
4

8
Ωx

0 0 0
√

4
8

Ω∗x ∆+2





C̃-2

C̃-1

C̃0

C̃+1

C̃+2


(A.10)

Having performed some transformations on a time-dependent setup, this Hamilto-
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nian is now time-independent, as the C̃(t) terms now oscillate instead. The diagonal

terms depend on the applied frequency ωRF , detuning δ as ∆i, and energies of the

bare states set by BDC . Off diagonal, we have adjacent state couplings driven by

the amplitude BRF of the external field.
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APPENDIX B

Microwave Lattice

With an eye towards future microstrip atom chip design, we have constructed

a macro-sized demonstration model to test different features, among them the mi-

crowave lattice. A number of undergraduate researchers in our lab have developed

methods of etching away copper to leave traces for testing, shown in Fig. B.1(top).

Together with our post-doc researcher Doug Beringer, we made a measurement of

magnetic field power along these traces. We inserted microwaves into either end

port, generated by a SynthHD Pro signal generator, with directional coupler ports

to prevent reflections.

We show data from this experiment in Fig. B.1(bottom). Each connected col-

ored curve shows the spatial measurements of microwave magnetic field power. The

data show roughly sinusoidal position dependence, forming the magnetic ‘microwave

lattice’ we had expected. Each different color curve shows a new insertion phase

difference, in steps of π/4. We can see a continuous shift in phase should translate

atoms confined in one of these axial minima along the trace.
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FIG. B.1: Demonstration of a microwave lattice. Microwaves are inserted into both
microstrip ports (top), and we measure pick-up magnetic field power along the microstrip
trace, across a range of phases. Measurements are normalized to account for measurement
artifacts, and demonstrate the translation of the sinusoidal lattice field with insertion
phase differences (bottom).
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APPENDIX C

Rabi Maps

Here, we showcase more time steps of the ‘Rabi map’ procedure [82] used to

map the AC Zeeman Ω(x, y) field contours by imaging only the initial |2,+2〉 state.

In each figure, we show a new +2 µs time step using 20 mW in each of two wires

in the U-U configuration with insertion phase labeled in each cell. This represents

some initial low-power exploration from July 27, 2020.

Plots like these have the moniker ‘zebra’ plots (or here ‘bulls-eye’ plots) because

a gradient in RF power flops atoms at different rates spatially, and when we image

one state, a gradient is mapped by stripes in the resultant atom density. Each dark

and light band marks contours of ‘iso-Ω0’ as atoms in the F+ = 2 state react to the

generated B− near field.

These dark and bright contour lines are illustrated in Fig. C.1, where we take

an illustrative case (10 µs, 130◦) and draw on black and white iso-Rabi contour

lines. Each black line shows atoms in the initial state, either before a Rabi flop

(the black circle), or because it has flopped out of, then back to the initial state,

or out and in again, and so on. Each white line shows a ‘half-flop,’ where atoms

are not visible, as they have flopped into states (mF 6= 2) other than the imaged
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initial state (mF = 2), along with repetitions of this behavior over successive flops.

Approaching the atom chip at the top of the image, the lines become more dense,

as the Rabi gradient is steepest near the chip.

We could analyze these images by fitting the atom number at any location over

time to the Rabi fits of Chap. 4. We don’t elect to do this, we simply use these

Rabi map images to illustrate the power gradients over space, especially when they

show a trapping field. In these illustrations, a trap looks like a small bright region

of atoms which haven’t Rabi flopped, surrounded by atoms that have.

An animation containing these frames and some others are in the GitHub repo:

https://github.com/drewrotunno/ThesisCode
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FIG. C.1: Illustration of the Rabi Map’s ability to map contour lines of the Rabi
frequency, with (top) the original image and (bottom) with annotations. Atoms are
subject to a varying-duration pulsed RF two-wire field, and the atoms are imaged in the
initial |2,+2〉 state. Atoms in the initial state are marked by black lines, either because
the atoms have not flopped or have flopped back into their initial state. Areas marked
by white lines have atoms which are not visible, and represent a ‘half’ flop, out of the
initial state.
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FIG. C.2: Rabi map image, before any pulse.

FIG. C.3: Rabi map image, using a 2 µs pulse.
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FIG. C.4: Rabi map image, using a 4 µs pulse.

FIG. C.5: Rabi map image, using a 6 µs pulse.
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FIG. C.6: Rabi map image, using a 8 µs pulse.

FIG. C.7: Rabi map image, using a 10 µs pulse.
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FIG. C.8: Rabi map image, using a 12 µs pulse.

FIG. C.9: Rabi map image, using a 14 µs pulse.
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FIG. C.10: Rabi map image, using a 16 µs pulse.

FIG. C.11: Rabi map image, using a 18 µs pulse.
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FIG. C.12: Rabi map image, using a 20 µs pulse.

FIG. C.13: Rabi map image, using a 22 µs pulse.
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FIG. C.14: Rabi map image, using a 24 µs pulse.

FIG. C.15: Rabi map image, using a 26 µs pulse.
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FIG. C.16: Rabi map image, using a 28 µs pulse.

FIG. C.17: Rabi map image, using a 30 µs pulse.
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[72] Z. Lü and H. Zheng, “Effects of counter-rotating interaction on driven tun-
neling dynamics: Coherent destruction of tunneling and bloch-siegert shift,”
Physical Review A, vol. 86, no. 2, p. 023831, 2012.

[73] M. Matthews, B. P. Anderson, P. Haljan, D. Hall, M. Holland, J. Williams,
C. Wieman, and E. Cornell, “Watching a superfluid untwist itself: Recur-
rence of rabi oscillations in a bose-einstein condensate,” Physical review letters,
vol. 83, no. 17, p. 3358, 1999.

[74] C. Menotti, A. Smerzi, and A. Trombettoni, “Superfluid dynamics of a bose–
einstein condensate in a periodic potential,” New Journal of Physics, vol. 5,
no. 1, p. 112, 2003.

[75] V. Galitski and I. B. Spielman, “Spin–orbit coupling in quantum gases,” Na-
ture, vol. 494, no. 7435, pp. 49–54, 2013.

[76] S. Inouye, M. Andrews, J. Stenger, H.-J. Miesner, D. M. Stamper-Kurn, and
W. Ketterle, “Observation of feshbach resonances in a bose–einstein conden-
sate,” Nature, vol. 392, no. 6672, pp. 151–154, 1998.

[77] P. Courteille, R. Freeland, D. Heinzen, F. Van Abeelen, and B. Verhaar, “Ob-
servation of a feshbach resonance in cold atom scattering,” Physical Review
Letters, vol. 81, no. 1, p. 69, 1998.

236



[78] B. M. Garraway and H. Perrin, “Recent developments in trapping and ma-
nipulation of atoms with adiabatic potentials,” Journal of Physics B: Atomic,
Molecular and Optical Physics, vol. 49, no. 17, p. 172001, 2016.

[79] A. E. Blackwell, A. P. Rotunno, and S. Aubin, “Demonstration of the lateral
ac skin effect using a pickup coil,” American Journal of Physics, vol. 88, no. 8,
pp. 676–684, 2020.

[80] W. Miyahira, A. Rotunno, S. Du, and S. Aubin, “Microwave atom chip de-
sign.” in preparation.

[81] M. Ivory, A. Ziltz, C. Fancher, A. Pyle, A. Sensharma, B. Chase, J. Field,
A. Garcia, D. Jervis, and S. Aubin, “Atom chip apparatus for experiments
with ultracold rubidium and potassium gases,” Rev. Sci. Instrum., vol. 85,
no. 4, p. 043102, 2014.
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