Today's Topics

Wednesday, November 20, 2019 (Week 12, lecture 29) – Chapters 18, 19, 22, 23.

- 1. H-R diagram.
- 2. Stellar evolution: Main sequence.
- 3. Stellar evolution: Sun to red giant.

Heavy stars

- ➢ Blue-ish color.
- Hot and very luminous
- > Very short lived.
 - \rightarrow < 1-10 million years

Light stars (sun-like & smaller

- Yellow and red color.
- ➤ cooler and dimmer.

> Long lived.

 \rightarrow > 10 billion years.

Spectral Type	Mass (Sun=1)	Radius (Sun=1)	Luminosity (Sun=1)	Temperature	Lifetime (yrs) on main seq.
G0	1.1	1.1	1.4	6,000 K	9 billion

Spectral Type	Mass (Sun=1)	Radius (Sun=1)	Luminosity (Sun=1)	Temperature	Lifetime (yrs) on main seq.
FO	1.7	1.4	5	7,500 K	2.7 billion
G0	1.1	1.1	1.4	6,000 K	9 billion
КО	0.8	0.8	0.35	5,000 K	14 billion

Spectral Type	Mass (Sun=1)	Radius (Sun=1)	Luminosity (Sun=1)	Temperature	Lifetime (yrs) on main seq.
A0	3.3	2.5	55	10,000 K	0.5 billion
FO	1.7	1.4	5	7,500 K	2.7 billion
G0	1.1	1.1	1.4	6,000 K	9 billion
КО	0.8	0.8	0.35	5,000 K	14 billion
MO	0.4	0.6	0.05	3,500 K	200 billion

Spectral Type	Mass (Sun=1)	Radius (Sun=1)	Luminosity (Sun=1)	Temperature	Lifetime (yrs) on main seq.
O5	40	18	700,000	40,000 K	0.001 billion (1 million)
BO	16	7	270,000	28,000 K	0.01 billion (10 million)
A0	3.3	2.5	55	10,000 K	0.5 billion
FO	1.7	1.4	5	7,500 K	2.7 billion
G0	1.1	1.1	1.4	6,000 K	9 billion
КО	0.8	0.8	0.35	5,000 K	14 billion
MO	0.4	0.6	0.05	3,500 K	200 billion

Heavy stars

- ➢ Blue-ish color.
- Hot and very luminous
- > Very short lived.
 - \rightarrow < 1-10 million years

Light stars (sun-like & smaller

- Yellow and red color.
- ➤ cooler and dimmer.

> Long lived.

 \rightarrow > 10 billion years.

Heavy stars

- ➢ Blue-ish color.
- Hot and very luminous.
- > Very short lived.
 - \rightarrow < 1-10 million years.

Light stars (sun-like & smaller

- Yellow and red color.
- ➤ cooler and dimmer.
- > Long lived.
 - \rightarrow > 10 billion years.

Old age

Stars evolve <u>quickly</u> towards the upper right corner.

ightarrow More luminous, but cooler.

Luminosity (L_{sur}

Heavy stars

- ➢ Blue-ish color.
- Hot and very luminous.
- > Very short lived.
 - \rightarrow < 1-10 million years.

Light stars (sun-like & smaller

- Yellow and red color.
- ➤ cooler and dimmer.
- > Long lived.
 - \rightarrow > 10 billion years.

Old age

Stars evolve <u>quickly</u> towards the upper right corner.

ightarrow More luminous, but cooler.

Red Giants & Supergiants

Red Giants

End-of-life stars with masses of 0.6-10 $\rm M_{Sun}.$

Red Giants & Supergiants

Red Giants

End-of-life stars with masses of 0.6-10 $\rm M_{Sun}.$

Red Supergiants End-of-life stars with masses of 10-40 M_{Sun}.

Aldebaran & Betelgeuse in the Sky

Evolution of Sun-like Stars

Stage	Time in This Stage (years)	Surface Temperature (K)	Luminosity (L _{Sun})	Diameter (Sun = 1)
Main sequence	11 billion	6000	1	1
Becomes red giant	1.3 billion	3100 at minimum	2300 at maximum	165
Helium fusion	100 million	4800	50	10
Giant again	20 million	3100	5200	180
white dwarf (+ planetary neb	forever oula)	40,000 к → 4,000 к	~ 1 → 0.01	~ 0.01

Becoming a Red Giant

1. Main sequence operation

Proton-proton fusion chain in core 4x Hydrogen \rightarrow 1 helium

Becoming a Red Giant

1. Main sequence operation

Proton-proton fusion chain in core 4x Hydrogen \rightarrow 1 helium

2. Core hydrogen exhausted

- Helium core begins to **contract**.
- Helium core **heats up**.
- Hydrogen just outside of helium core **begins fusion**.

Becoming a Red Giant

1. Main sequence operation

Proton-proton fusion chain in core 4x Hydrogen \rightarrow 1 helium

Stellar envelope Hydrogen burning core

2. Core hydrogen exhausted

- Helium core begins to **contract**.
- Helium core heats up.
- Hydrogen just outside of helium core **begins fusion**.

3. Expansion to red giant

- **Heat** from new hydrogen shell fusion is **significant** and heats up outer hydrogen in stellar envelope.

- Stellar envelope heats up and **expands** (outer layer then cools).

- Helium core continues to contract and heat up.

Hydrogen fusion shell Heats stellar envelope

Helium core contracts & heats up

Stellar envelope expands

Helium Fusion

- At T \approx 100,000,000 K, helium nuclei begin to fuse.
- Fusion of two helium nuclei does not produce a stable isotope:
 ⁴He + ⁴He → ⁸Be (lifetime ~ 10⁻¹⁶ 10⁻¹⁷ s)

Triple alpha process (at 10⁸ K)

Three helium nuclei can fuse simultaneously to produce carbon-12 (stable):

 $^{4}\text{He} + {}^{4}\text{He} + {}^{4}\text{He} \rightarrow {}^{12}\text{C} + 7.65 \text{ MeV}$

... also ⁴He + ¹²C \rightarrow ¹⁶O

Helium Fusion

- At T \approx 100,000,000 K, helium nuclei begin to fuse.
- Fusion of two helium nuclei does not produce a stable isotope:
 ⁴He + ⁴He → ⁸Be (lifetime ~ 10⁻¹⁶ 10⁻¹⁷ s)

Triple alpha process (at 10⁸ K)

Three helium nuclei can fuse simultaneously to produce carbon-12 (stable):

 $^{4}\text{He} + {}^{4}\text{He} + {}^{4}\text{He} \rightarrow {}^{12}\text{C} + 7.65 \text{ MeV}$

... also ⁴He + ¹²C \rightarrow ¹⁶O

Helium Flash (for Sun-like stars)

The fusion of helium into carbon happens very quickly (possibly in a few minutes).

Red Giant Evolution from Sun-like Star

Structure of Red Giant Star before "Death"

- Over the course of its red giant phase, a Sun-like star is expected to shed roughly 50% of its mass.
- This ejected mass becomes a planetary nebula with a white dwarf at its center.

(note: planetary nebula has nothing to do with planets)

- Over the course of its red giant phase, a Sun-like star is expected to shed roughly 50% of its mass.
- This ejected mass becomes a planetary nebula with a white dwarf at its center.

(note: planetary nebula has nothing to do with planets)

- Over the course of its red giant phase, a Sun-like star is expected to shed roughly 50% of its mass.
- This ejected mass becomes a planetary nebula with a white dwarf at its center.

(note: planetary nebula has nothing to do with planets)

