Feedback on Course

Course topics: planetary vs stellar \rightarrow add/drop topics

Course content

- \rightarrow More/less quantitative
- \rightarrow More/less non-science content

Interlude topics: change vs keep → suggestions

Course work: too much vs too little

- \rightarrow Problem sets
- \rightarrow Midterms
- \rightarrow Interludes: papers & talks

Lecture format

- \rightarrow More visual vs less visual
- \rightarrow More/less worked examples
- \rightarrow More/less interactive
- \rightarrow More/less PollEv
- → More/less in-class demonstrations

Interlude 2 Talks Space Art

Wednesday, December 4

Team 9: Clay Littel, Luciano Saporito, Jack Slater, Colby Sorsdal

Team 10: Rachel Williamson, Stella Brockwell, Carter Helmandollar, Guy Rahat

Team 11: Emily MacKenzie, Abby Maher, Margaret McLaughlin, William Rhodes

Team 12: Kira Quintin, Jeannine Brokaw, Alex MacNamara, Jireh Jin Lee

Note 1: Talks will be 10 minutes long.

Note 2: Do not use paragraphs and long sentences.

Send me your PowerPoint or PDF talk by 8am Monday morning.

Papers are due in class on Friday, December 6 (last day of classes).

Today's Topics

Monday, December 2, 2019 (Week 14, lecture 32) – Chapter 24.

1. Special Relativity review.

2. General Relativity.

3. Gravitational Waves.

Today's Topics

Monday, December 2, 2019 (Week 14, lecture 32) – Chapter 24.

1. Special Relativity review.

What happens when you travel close to the speed of light "c"

2. General Relativity.

3. Gravitational Waves.

Today's Topics

Monday, December 2, 2019 (Week 14, lecture 32) – Chapter 24.

1. Special Relativity review.

What happens when you travel close to the speed of light "c"

2. General Relativity.

What happens when you have very strong gravity

3. Gravitational Waves.

Special Relativity (REVIEW)

Principle of Relativity

The laws of physics are the same in all inertial reference frames.

Corollary #1

You cannot tell if you are moving (based on local measurements) in an inertial frame.

Corollary #2: Universal speed of light

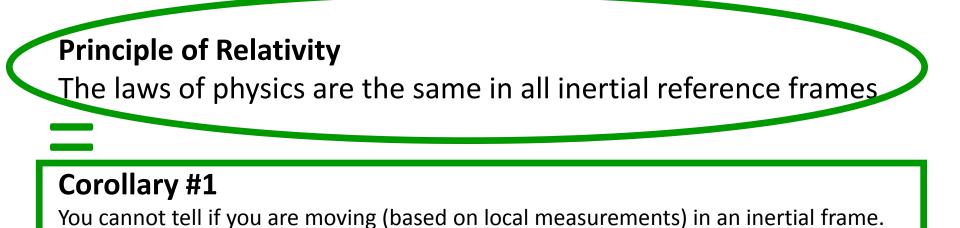
The speed of light in vacuum is the same in all inertial frames, regardless of the motion of the source.

Special Relativity (REVIEW)

Principle of Relativity

The laws of physics are the same in all inertial reference frames.

Corollary #1


You cannot tell if you are moving (based on local measurements) in an inertial frame.

Corollary #2: Universal speed of light

The speed of light in vacuum is the same in all inertial frames, regardless of the motion of the source.

Special Relativity (REVIEW)

Corollary #2: Universal speed of light

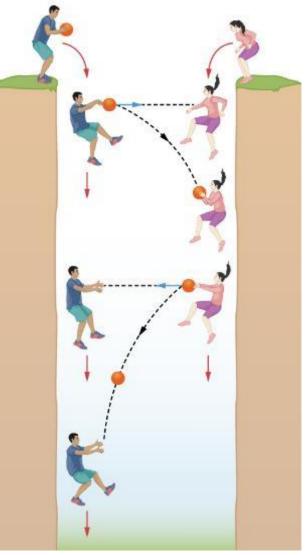
The speed of light in vacuum is the same in all inertial frames, regardless of the motion of the source.

General Relativity

Equivalence Principle

A coordinate system that is falling freely in a gravitational field is (equivalent to) an inertial frame.

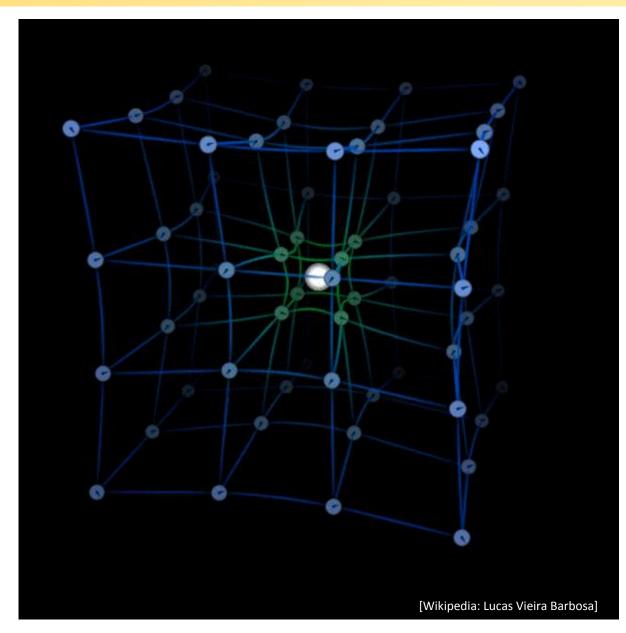
Corollary

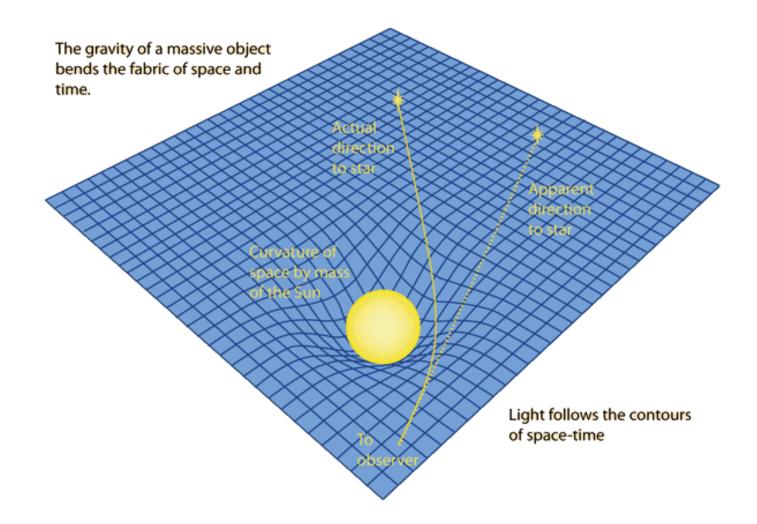

You cannot tell if you are at rest in a non-gravitational field (i.e. in a standard inertial frame) or freely falling under gravity based in based on local measurements.

Equivalence Principle

You cannot tell if you are at rest in free space (i.e. in a standard inertial frame) or freely falling under gravity based in based on local measurements.

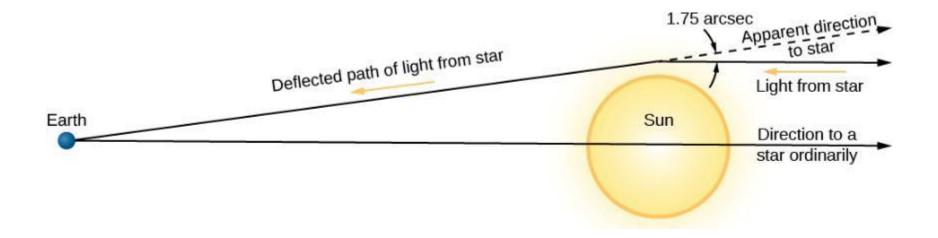
Example


- Two people play catch as they descend into a bottomless abyss.
- Since the people and ball all fall at the same speed, it appears to them that they can play catch by throwing the ball in a straight line between them.
- Within their frame of reference, there appears to be no gravity.

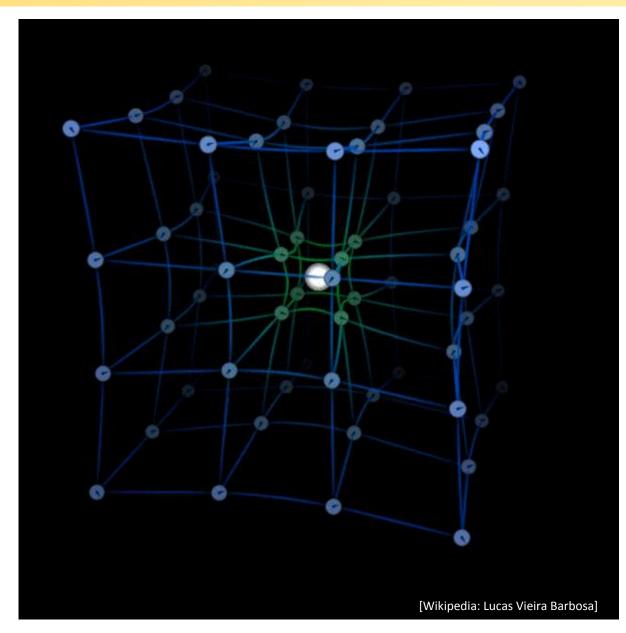

Equivalence Principle on ISS

Curved Space-Time

Curved Space-Time: light rays in 2D



[http://hyperphysics.phy-astr.gsu.edu/hbase/Relativ/grel.html]


Curved Space-Time

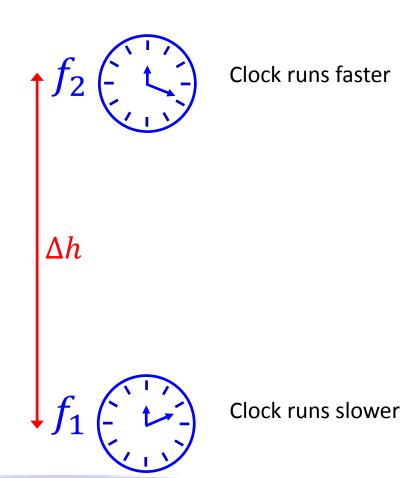
Eddington's measurement of deflection of light

- > Arthur Eddington measures the deflection of starlight by the Sun.
- > 1919 solar eclipse: West Africa & Brazil.
- The star appears shifted: Measurements show deflection that agrees with General Relativity.

Curved Space-Time

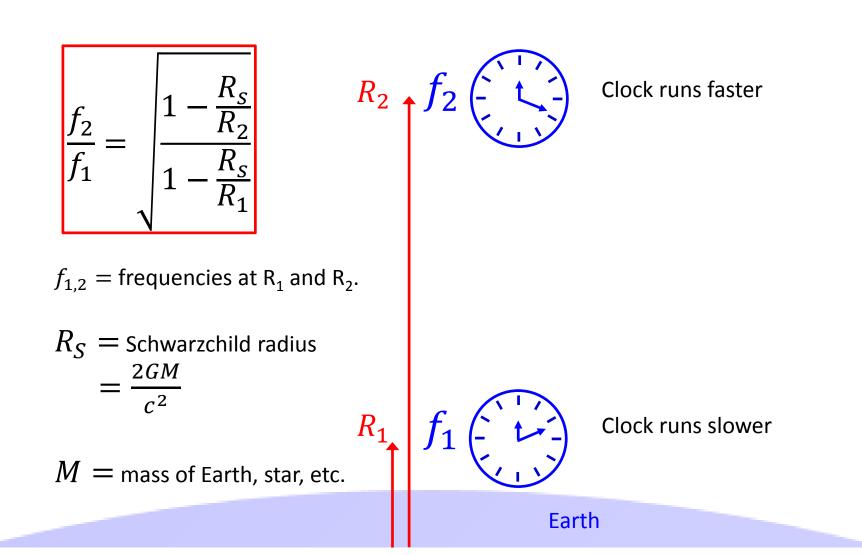
Gravitational Time Dilation: small heights

Clocks in a gravitational field run slower than clocks in free space.

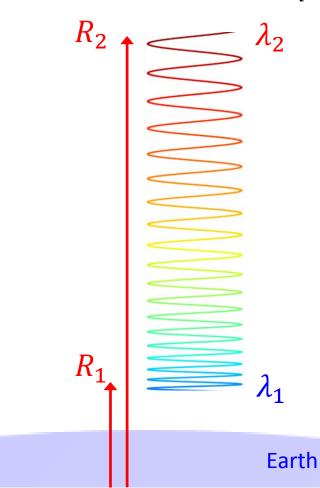

Earth

For small changes in height Δh :

 $\frac{\Delta f}{f} = \frac{g\Delta h}{c^2}$


f = frequency of clock

g = acceleration of gravity = 9.8 m/s² at Earth's surface


Gravitational Time Dilation: large distances

Clocks in a gravitational field run slower than clocks in free space.

Gravitational Redshift: Light shifts to the **red** when it escapes gravity

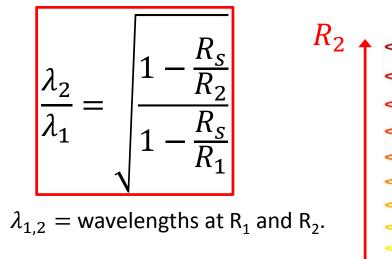
As light leaves the gravitational pull of Earth/star/blackhole, it loses "kinetic energy" and shifts to the red ($E_{photon} = hf$).

[https://sites.google.com/site/salamcosmology/ research/relativistic-effects-on-lss]

Gravitational Redshift: Light shifts to the **red** when it escapes gravity

As light leaves the gravitational pull of Earth/star/blackhole, it loses "kinetic energy" and shifts to the red ($E_{photon} = hf$).

REarth


Planck's Constant $h = 6.626 \times 10^{-34}$ J.S

[https://sites.google.com/site/salamcosmology/ research/relativistic-effects-on-lss]

Gravitational Redshift: Light shifts to the **red** when it escapes gravity

As light leaves the gravitational pull of Earth/star/blackhole, it loses "kinetic energy" and shifts to the red ($E_{photon} = hf$).

 R_1

$$R_S = \text{Schwarzchild radius} \\ = \frac{2GM}{c^2}$$

M = mass of Earth, star, etc.

Planck's Constant

 $h = 6.626 \times 10^{-34} \text{ J.S}$

Earth

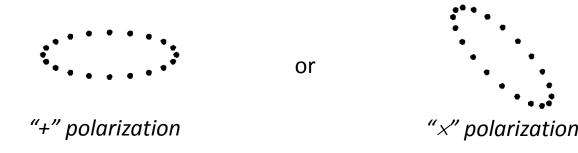
[https://sites.google.com/site/salamcosmology/ research/relativistic-effects-on-lss]

Gravitational Waves

- Accelerating and orbiting masses will emit gravitational waves.
- Gravitational waves are a consequence of the finite speed of gravity (speed of light).

 \rightarrow a change in gravity's strength propagates at the speed of light. (i.e. it's not instantaneous.)

- > Only large masses emit significant gravitational waves.
 - → Orbiting **black holes** and **neutron stars**.
 - \rightarrow Masses must be close together (i.e. fast moving) for significant emission.

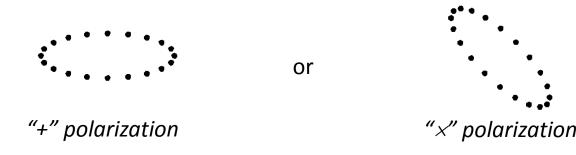

Gravitational Waves

- Accelerating and orbiting masses will emit gravitational waves.
- Gravitational waves are a consequence of the finite speed of gravity (speed of light).

 \rightarrow a change in gravity's strength propagates at the speed of light. (i.e. it's not instantaneous.)

- > Only large masses emit significant gravitational waves.
 - → Orbiting **black holes** and **neutron stars**.
 - \rightarrow Masses must be close together (i.e. fast moving) for significant emission.

A passing gravitational wave applies weak pulling & stretching forces along two perpendicular axes.

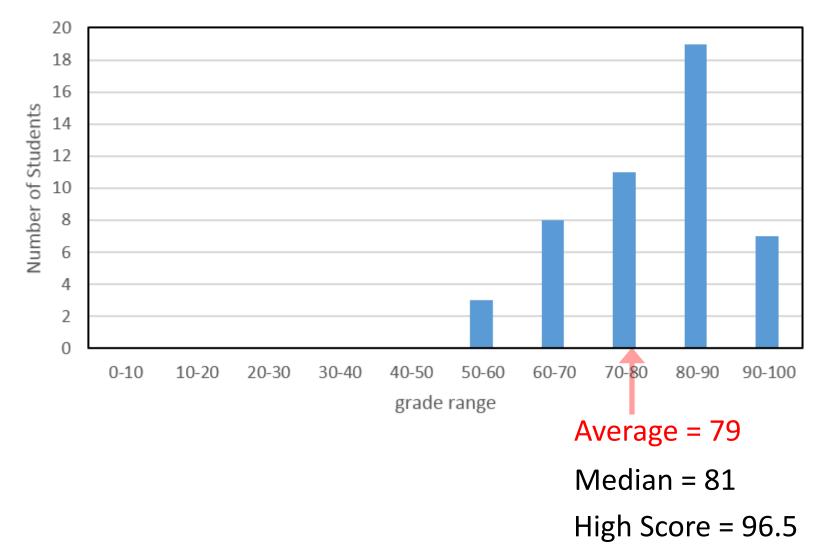


Gravitational Waves

- Accelerating and orbiting masses will emit gravitational waves.
- Gravitational waves are a consequence of the finite speed of gravity (speed of light).

 \rightarrow a change in gravity's strength propagates at the speed of light. (i.e. it's not instantaneous.)

- > Only large masses emit significant gravitational waves.
 - → Orbiting **black holes** and **neutron stars**.
 - \rightarrow Masses must be close together (i.e. fast moving) for significant emission.
- A passing gravitational wave applies weak pulling & stretching of <u>space</u> along two perpendicular axes (and <u>time</u>).



Gravitational Wave "Telescope" LIGO: Laser Interferometer Gravitational-Wave Observatory

Midterm Test #3

Midterm #3: Histogram of Grades

