Final Exam

Tuesday, December 17, 2019, 9 am – noon room 110 (i.e. regular room)

Format: 8 midterm-style problems

Content

1/4 of problems on topics covered since midterm #3: Stellar evolution, H-R diagram, white dwarfs, supernovas, creation of heavy elements, neutron stars, black holes, Special Relativity, General Relativity.

 \sim 1/4 of problems on midterm #3 topics.

 \sim 1/4 of problems on midterm #2 topics.

 \sim 1/4 of problem on midterm #1 topics.

Today's Topics

Friday, December 6, 2019 (Week 14, lecture 33) – Chapter 24.

1. Type II supernovas.

2. Neutron stars & pulsars.

3. Black holes.

Supernovas can be as bright as a galaxy

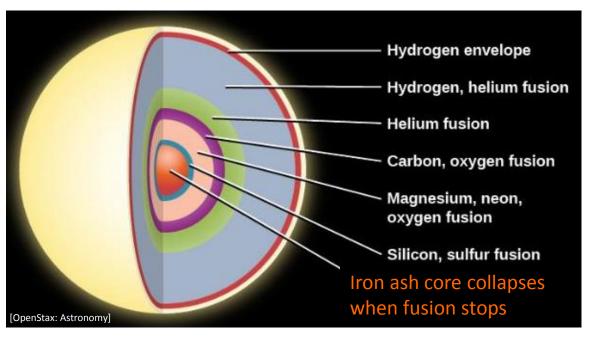
Supernova SN 1994 D

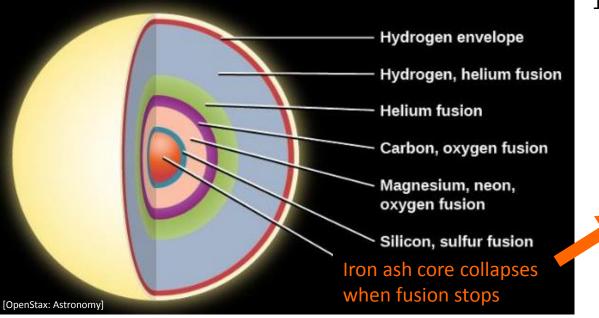
[NASA/ESA/Hubble: Galaxy NGC 4526]

Supernova SN 1987A

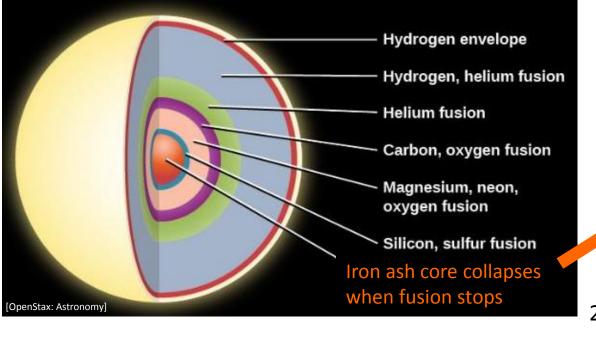
[NASA, ESA, and R. Kirshner and P. Challis: Jan. 2017]

Supernova SN 1987A




Type II supernova

- \rightarrow Core collapses under gravity.
- \rightarrow Produces a neutron star or black hole.


Note: No neutron star has been detected yet !

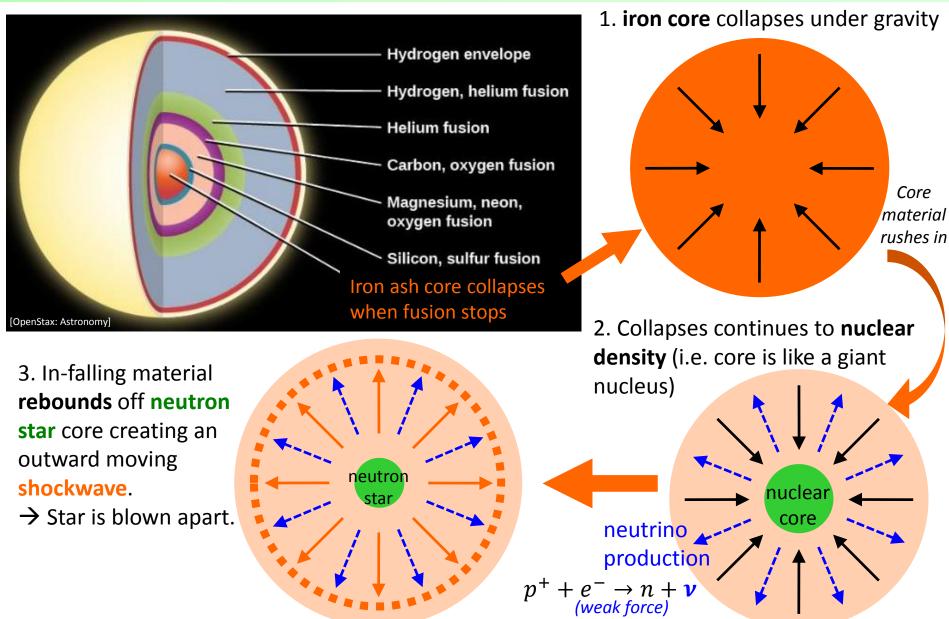
1. iron core collapses under gravity

Core material rushes in

1. iron core collapses under gravity

Core

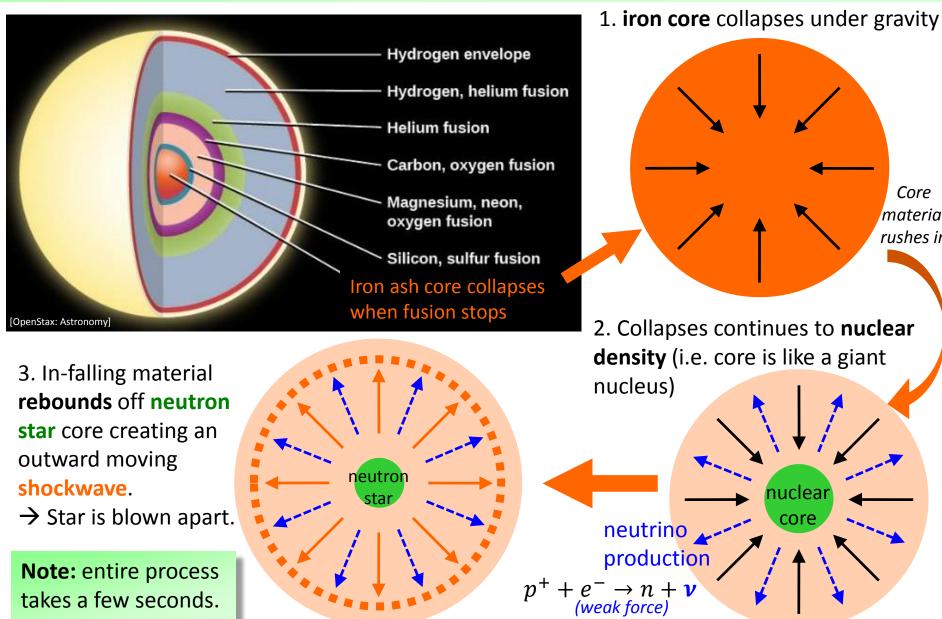
material


rushes in

2. Collapses continues to **nuclear density** (i.e. core is like a giant nucleus)

neutrino _____

 $p^+ + e^- \rightarrow n + \nu$ (weak force) nuclea


core

Core

material

rushes in

Type II Supernova: What's produced ?

Lots of Energy

- Supernovas typically emit about 10⁴⁶ Joules of energy.
 - \rightarrow 100 times more energy than Sun will emit in its lifetime (10⁴⁴ Joules).
- Supernovas shine with a luminosity of 10⁹-10¹⁰ L_{Sun} for a few months.
- This energy comes from gravitational potential energy released during the collapse.

Type II Supernova: What's produced ?

Lots of Energy

- Supernovas typically emit about 10⁴⁶ Joules of energy.
 - \rightarrow 100 times more energy than Sun will emit in its lifetime (10⁴⁴ Joules).
- Supernovas shine with a luminosity of 10⁹-10¹⁰ L_{sun} for a few months.
- This energy comes from gravitational potential energy released during the collapse.

Lots of neutrinos

- When the core collapses, the temperature spikes to 10-100 billion K at nuclear densities. \rightarrow neutrino production is favored: $p^+ + e^- \rightarrow n + \nu$.
- About 20% of the core's mass is converted to neutrinos.

 \rightarrow Energy: ~ 99% of the energy is released through neutrinos.

Type II Supernova: What's produced ?

Lots of Energy

- Supernovas typically emit about 10⁴⁶ Joules of energy.
 - \rightarrow 100 times more energy than Sun will emit in its lifetime (10⁴⁴ Joules).
- Supernovas shine with a luminosity of 10⁹-10¹⁰ L_{sun} for a few months.
- This energy comes from gravitational potential energy released during the collapse.

Lots of neutrinos

- When the core collapses, the temperature spikes to 10-100 billion K at nuclear densities. → neutrino production is favored: $p^+ + e^- \rightarrow n + \nu$.
- About 20% of the core's mass is converted to neutrinos.

 \rightarrow Energy: ~ 99% of the energy is released through neutrinos.

Some light & heavy elements

- About 0.01 % of the supernova's energy is released as electromagnetic radiation (e.g. light).
- Most of the light is emitted due to radioactive decay of heavy elements (primarily Ni).
- Supernovas produce some elements heavier than Fe and Ni (up to Rb).

Supernova

gravity powered neutrino explosion of a massive star

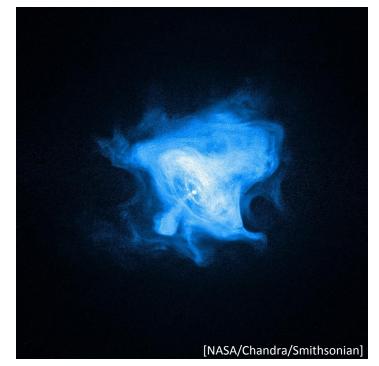
Type II Supernova: What's Left ?

Initial Star Mass	Outcome
10-40 M _{Sun}	Supernova $ ightarrow$ Neutron Star
40-90 M _{Sun}	Supernova $ ightarrow$ Black Hole
>90 M _{Sun}	Direct collapse to Black Hole

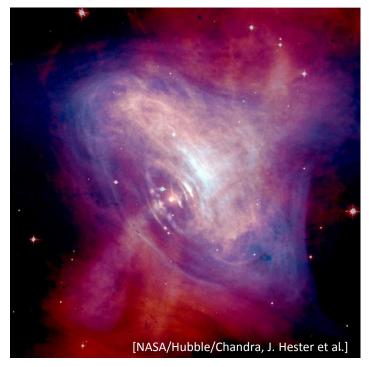
Note: the exact outcome depends on the initial composition (metallicity) star.

Crab Nebula: Supernova Remnant

Supernova in 1054 AD constellation: Taurus


Crab Nebula: Supernova Remnant

Supernova in 1054 AD constellation: Taurus



[NASA/ESA/Hubble, 1999-2000]

Crab Nebula: Neutron Star

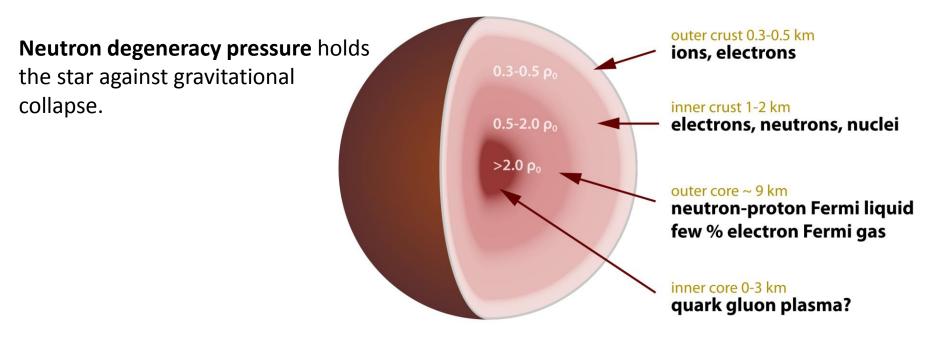
X-ray image of Crab Nebula neutron star, 2008

X-ray + optical images of Crab Nebula neutron star

Neutron Stars

[Table 23.3, OpenStax: Astronomy]

Property	White Dwarf	Neutron Star
Mass (Sun = 1)	0.6 (always <1.4)	Always >1.4 and <3
Radius	7000 km (Earth size)	10 km (city size)
Density	8 × 10 ⁵ g/cm ³	10 ¹⁴ g/cm ³

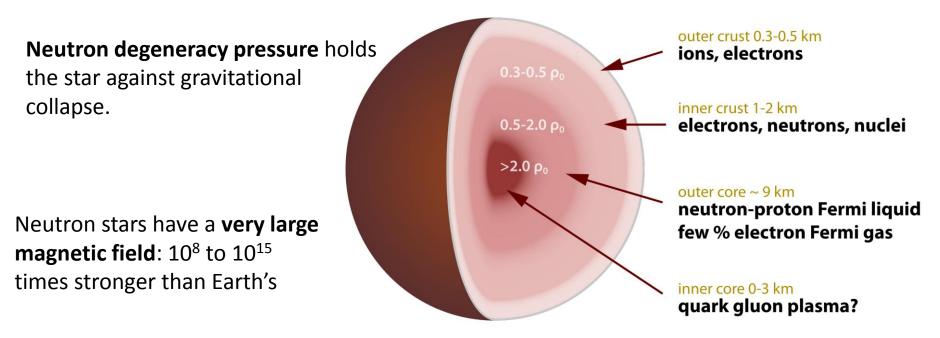

Neutron degeneracy pressure holds

the star against gravitational collapse.

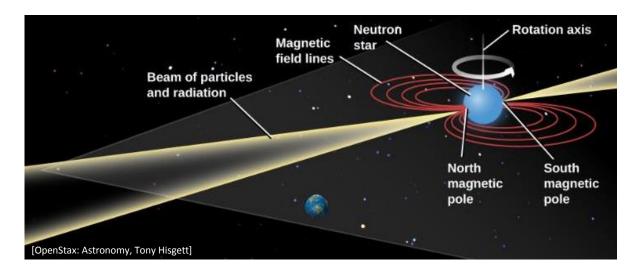
Neutron Stars

[Table 23.3, OpenStax: Astronomy]

Property	White Dwarf	Neutron Star
Mass (Sun = 1)	0.6 (always <1.4)	Always >1.4 and <3
Radius	7000 km (Earth size)	10 km (city size)
Density	8 × 10 ⁵ g/cm ³	10 ¹⁴ g/cm ³



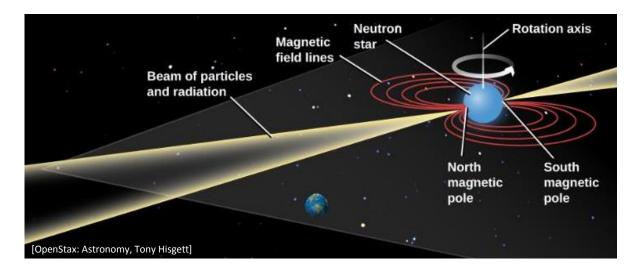
[Wikipedia: Robert Schulze]


Neutron Stars

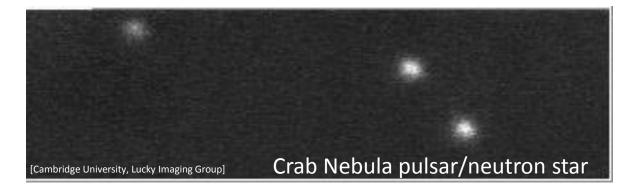
[Table 23.3, OpenStax: Astronomy]

Property	White Dwarf	Neutron Star
Mass (Sun = 1)	0.6 (always <1.4)	Always >1.4 and <3
Radius	7000 km (Earth size)	10 km (city size)
Density	8 × 10 ⁵ g/cm ³	10 ¹⁴ g/cm ³

Pulsars: Rotating Neutron Stars

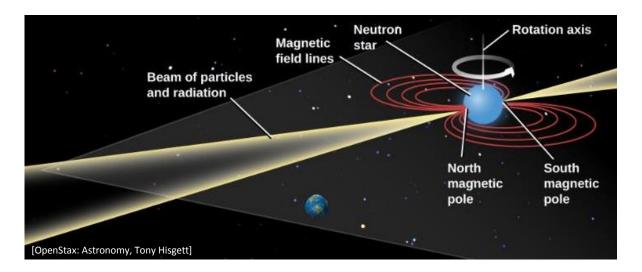


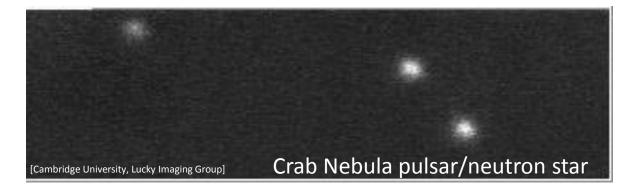
- Beams of radiation from the magnetic poles of a neutron star can give rise to pulses of emission as the star rotates.
- As each beam sweeps over Earth, we see a short pulse of radiation (like a lighthouse).



Jocelyn Bell Burnell co-discoverer of pulsars (1967)

Pulsars: Rotating Neutron Stars


- Beams of radiation from the magnetic poles of a neutron star can give rise to pulses of emission as the star rotates.
- As each beam sweeps over Earth, we see a short pulse of radiation (like a lighthouse).



Jocelyn Bell Burnell co-discoverer of pulsars (1967)

Pulsars: Rotating Neutron Stars

- Beams of radiation from the magnetic poles of a neutron star can give rise to pulses of emission as the star rotates.
- As each beam sweeps over Earth, we see a short pulse of radiation (like a lighthouse).

Jocelyn Bell Burnell co-discoverer of pulsars (1967)

Typical rotation period:

- Very stable.
- ms to seconds.
- Can change abruptly during a "starquake."

Black Holes

Black hole

A celestial object whose gravity is so strong that even light cannot escape from it.

- \rightarrow Light emitted outside of the **event horizon** (i.e. **Schwarzchild radius**) can escape.
- \rightarrow Light emitted within the **event horizon** cannot escape.
- \rightarrow The event horizon / Schwarzchild radius defines the size and surface of a black hole.

Black Holes

Black hole

A celestial object whose gravity is so strong that even light cannot escape from it.

- → Light emitted outside of the **event horizon** (i.e. **Schwarzchild radius**) can escape.
- \rightarrow Light emitted within the **event horizon** cannot escape.
- \rightarrow The event horizon / Schwarzchild radius defines the size and surface of a black hole.

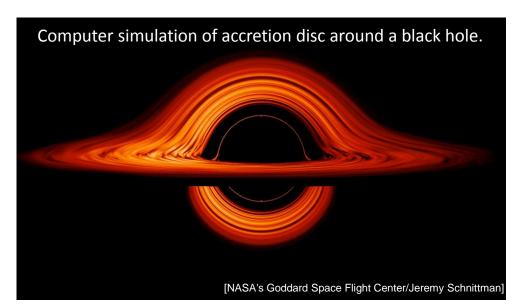
Schwarzchild radius= $R_S = \frac{2GM}{c^2}$

The **event horizon** is about 2-3 times smaller than the black shadow.

Supermassive black hole at center of M87 galaxy. [Event Horizon Telescope, www.eso.org, λ=1.3 mm]

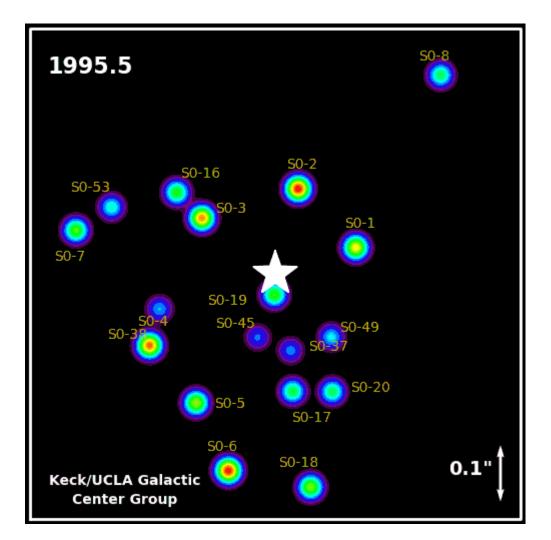
Black Holes


Black hole


A celestial object whose gravity is so strong that even light cannot escape from it.

- → Light emitted outside of the **event horizon** (i.e. **Schwarzchild radius**) can escape.
- \rightarrow Light emitted within the **event horizon** cannot escape.
- \rightarrow The event horizon / Schwarzchild radius defines the size and surface of a black hole.

Schwarzchild radius= $R_S = \frac{2GM}{c^2}$


The **event horizon** is about 2-3 times smaller than the black shadow.

Black Hole at center of Milky Way

The Sagittarius A* supermassive black hole

Stellar mass black hole

- The **Roche limit** is well <u>outside</u> of the event horizon.
- Any object falling towards the event horizon is **pulled apart** (spaghettified) by the strong **gravity gradient** (<u>tidal force</u>) of the black hole.

Stellar mass black hole

- The **Roche limit** is well <u>outside</u> of the event horizon.
- Any object falling towards the event horizon is **pulled apart** (spaghettified) by the strong **gravity gradient** (<u>tidal force</u>) of the black hole.

Supermassive black hole

- The **Roche limit** is well <u>inside</u> of the event horizon.
- Only after passing the event horizon is an object pulled apart by the black hole.

Stellar mass black hole

- The **Roche limit** is well <u>outside</u> of the event horizon.
- Any object falling towards the event horizon is **pulled apart** (spaghettified) by the strong **gravity gradient** (<u>tidal force</u>) of the black hole.

Supermassive black hole

- The **Roche limit** is well <u>inside</u> of the event horizon.
- Only after passing the event horizon is an object **pulled apart** by the black hole.

What happens if you watch an object fall into a black hole ?

Gravitational redshift: As the object falls its light becomes redder and eventually shifts into radio-waves.

Stellar mass black hole

- The **Roche limit** is well <u>outside</u> of the event horizon.
- Any object falling towards the event horizon is **pulled apart** (spaghettified) by the strong **gravity gradient** (<u>tidal force</u>) of the black hole.

Supermassive black hole

- The **Roche limit** is well <u>inside</u> of the event horizon.
- Only after passing the event horizon is an object **pulled apart** by the black hole.

What happens if you watch an object fall into a black hole ?

Gravitational redshift: As the object falls its light becomes redder and eventually shifts into radio-waves.

Gravitational time dilation: The object appears to slow down as it gets closer and closer to the event horizon.

Stellar mass black hole

- The **Roche limit** is well <u>outside</u> of the event horizon.
- Any object falling towards the event horizon is **pulled apart** (spaghettified) by the strong **gravity gradient** (<u>tidal force</u>) of the black hole.

Supermassive black hole

- The **Roche limit** is well <u>inside</u> of the event horizon.
- Only after passing the event horizon is an object **pulled apart** by the black hole.

What happens if you watch an object fall into a black hole ?

Gravitational redshift: As the object falls its light becomes redder and eventually shifts into radio-waves.

Gravitational time dilation: The object appears to slow down as it gets closer and closer to the event horizon.

→ Very close to the event horizon, the object becomes too redshifted to be well seen and also appears to come to a standstill.

(note: in frame of object, the object falls into black hole.)