Today's Topics

Wednesday, September 11, 2019 (Week 2, lecture 6) – Chapter 3.

1. Newton's Laws

- 2. Momentum & Energy
- 3. Gravity
- 4. Circular Motion

Isaac Newton: Founder of Classical Mechanics

Newton (1689) [by G. Kneller]

Sir Isaac Newton (1643-1727)

- Cambridge U.
- Founded Classical Mechanics.
- Co-discovered **Calculus**.
- Major contributions to Optics & Astronomy.

Isaac Newton: Founder of Classical Mechanics

Sir Isaac Newton (1643-1727)

- Cambridge U.
- Founded Classical Mechanics.
- Co-discovered **Calculus**.
- Major contributions to Optics & Astronomy.

Newton (1689) [by G. Kneller]

Classical Mechanics

- "Newton's Laws" of classical mechanics.
- Law of universal gravitation.
- Newton's laws are used for calculating planetary & stellar motion. (+ Einstein's "Special Relativity")

Isaac Newton: Founder of Classical Mechanics

Sir Isaac Newton (1643-1727)

- Cambridge U.
- Founded Classical Mechanics.
- Co-discovered **Calculus**.
- Major contributions to Optics & Astronomy.

Newton (1689) [by G. Kneller]

Classical Mechanics

- "Newton's Laws" of classical mechanics.
- Law of universal gravitation.
- Newton's laws are used for calculating planetary & stellar motion. (+ Einstein's "Special Relativity")

Astronomy

- **Optics:** white light & colors, refraction.
- Invented the reflecting telescope.

Newton's Laws

of Classical Mechanics

1st Law: An object moves at constant velocity if there is no net force acting on it.

[fine print: in an inertial reference frame]

2nd Law: Force = mass × acceleration.

3rd Law: For any force, there is always an equal and opposite reaction force.

Newton's 1st Law

An object moves at constant velocity if there is no net force acting on it.

[fine print: in an inertial reference frame]

Note: This law is a variation on the <u>Galilean relativity</u> statement.

Newton's 2nd Law

Force = Mass × Acceleration

or

F = max F = net forcem = massa = acceleration

[fine print: in an inertial reference frame]

Newton's 2nd Law

Force = Mass × Acceleration

or

F = max F = net forcem = massa = acceleration

[fine print: in an inertial reference frame]

Note 1: This equation is mostly useful if you know the net force applied.

Note 2: If the acceleration is zero, then the net force is zero.

For any force, there is always an equal and opposite reaction force

$$F_{A \to B} = -F_{B \to A}$$

For any force, there is always an equal and opposite reaction force

$$F_{A \to B} = -F_{B \to A}$$

Example:

$$A = box$$
$$F_A \equiv gravity$$

B = platform

For any force, there is always an equal and opposite reaction force

$$F_{A \to B} = -F_{B \to A}$$

For any force, there is always an equal and opposite reaction force

$$F_{A \to B} = -F_{B \to A}$$

Newton's 3rd Law: Rocket Thrust

A rocket accelerates by pushing on its exhaust.

A rocket does NOT push on the air to accelerate. A rocket does NOT push on its platform to accelerate.

Newton's 3rd Law: Rocket Thrust

A rocket accelerates by pushing on its exhaust.

A rocket does NOT push on the air to accelerate. A rocket does NOT push on its platform to accelerate.

Conservation of Momentum

momentum = mass × velocity

total momentum = sum of the momenta of all the sub-parts of a system

Conservation of Momentum

momentum = mass × velocity

total momentum = sum of the momenta of all the sub-parts of a system

Conservation Law

The total momentum of a closed system never changes.

no external objects enter no external forces

Momentum Conservation: Rocket Thrust

 $Momentum_{rocket} + Momentum_{exhaust} = 0$

Conservation of Energy

Kinetic Energy =
$$E_k = \frac{1}{2}mv^2$$

 $m = mass$
 $v = speed$

Potential Energy = "stored" energy

example: gravitational potential energy

Total Energy = sum of the energies of all the sub-parts of a system

Conservation of Energy

Kinetic Energy =
$$E_k = \frac{1}{2}mv^2$$

 $m = mass$
 $v = speed$

Potential Energy = "stored" energy

example: gravitational potential energy

Total Energy = sum of the energies of all the sub-parts of a system

Conservation Law

The total energy of a closed system never changes.

Newton figured out that the same force that is responsible for a *falling apple* is also responsible for keeping the *Moon in orbit* around the Earth.

Gravity

Newton figured out that the same force that is responsible for a *falling apple* is also responsible for keeping the *Moon in orbit* around the Earth.

Newton's law of universal gravitation

All masses attract each other according to the following relation:

Gravity

Newton figured out that the same force that is responsible for a *falling apple* is also responsible for keeping the *Moon in orbit* around the Earth.

Newton's law of universal gravitation

All masses attract each other according to the following relation:

Properties

- Falls off as $1/r^2$.
- Proportional to M_A .
- Proportional to M_B .
- G = Newton's constant = $6.67430(15) \times 10^{-11}$ $m^3/Kg \cdot s^2$

Why do all objects fall at the same rate?

Orbiting is free falling while missing Earth

Paths a & b: Initial speeds are weak enough that Earth's gravity pulls the projectile back to the surface.

Path c: Initial speed is strong enough that Earth's gravity never pulls the projectile back to the surface.

[OpenStax: Astronomy]

Orbiting is free falling while missing Earth

Paths a & b: Initial speeds are weak enough that Earth's gravity pulls the projectile back to the surface.

Path c: Initial speed is strong enough that Earth's gravity never pulls the projectile back to the surface.

"The knack of flying is learning how to throw yourself at the ground and miss"

- Hitchhikers Guide to the Galaxy

orbiting

Weightless in Orbit

Astronauts in Free Fall: While in space, astronauts are falling freely, so they experience "weightlessness."

Circular Motion

"ball on a string"

Circular Motion

Circular Motion Example: Earth's orbit of Sun

Newton's version of Kepler's 3rd Law

 $4\pi^2$ T^2 $G(M_1 + M_2)$

Formula is in SI units

- T = orbital period in seconds
- a = semimajor axis in meters

 $M_{1,2}$ =Mass of orbiting objects in Kg

 $G = 6.6743 \times 10^{-11} \text{ m}^3/\text{Kg.s}^2$