


Today’s Topics
Wednesday, September 27, 2019 (Week 4, lecture 12) – Chapter 6.

1. Reflecting Telescope

2. Resolving power

3. Adaptive Optics



Stellar Imaging Basics: Lens

Basic idea: You want to convert a light ray angle from a star into a position.
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 Bigger lens collects more light.
 You can see dimmer stars and further away stars.

 Magnification = Δ𝑥 gets bigger (for a given 𝜃).
 You can distinguish between two very close feature.

 Lens subtly distort the image.
 chromatic aberrations, glass defects, large lens sag. 
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Stellar Imaging Basics: Mirrors

Same basic idea: Convert a light ray angle from a star into a position.
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Stellar Imaging Basics: Mirrors

Same basic idea: Convert a light ray angle from a star into a position.
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 Bigger mirror collects more light.
 You can see dimmer stars and further away stars.

 Magnification = Δ𝑥 gets bigger (for a given 𝜃).
 You can distinguish between two very close feature.

 Mirrors can provide near zero distortion.
 no chromatic aberrations, no glass defects, much less large mirror sag. 



Reflecting Telescope

A large curved mirror collects the light and then focuses 

it onto a secondary smaller mirror.

[OpenStax: Astronomy]

Newtonian Reflector Cassegrain Reflector

 invented by Isaac Newton.

 Parabolic curved mirror is ideal.
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it onto a secondary smaller mirror.
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Newtonian Reflector Cassegrain Reflector

Benefits

 No chromatic aberrations.

 Glass defects do not matter.

 Large mirror can be 

supported across its entirety.

 Sag is less of problem.

 invented by Isaac Newton.

 Parabolic curved mirror is ideal.

Drawbacks

 Open to air: more cleaning.

 Secondary mirror and 

support structure introduce 

diffraction effects from their 

shadows.



Reflecting Telescope

A large curved mirror collects the light and then focuses 

it onto a secondary smaller mirror.

[OpenStax: Astronomy]

Newtonian Reflector Cassegrain Reflector

Benefits

 No chromatic aberrations.

 Glass defects do not matter.

 Large mirror can be 

supported across its entirety.

 Sag is less of problem.

Drawbacks

 Open to air: more cleaning.

 Secondary mirror and 

support structure introduce 

diffraction effects from their 

shadows.

 invented by Isaac Newton.

 Parabolic curved mirror is ideal.

Almost all scientific 

telescopes are reflectors.



Star Spikes

Shadow from support structure for secondary mirror generates “star spikes”.

[Cmglee - Own work, CC BY-SA 3.0, Wikipedia]

[NASA, ESA, and H. Richer 

(University of British 

Columbia), Wikipedia]

Star Spikes from a 

Hubble Space 

Telescope image 

(NGC 6397).



Single Mirror Telescopes

The Gemini telescopes are some of the 

largest single mirror telescopes.

 8.1 m (26 ft) primary mirror.

 1 m secondary mirror.

 Locations: Hawaii & Chile

[Gemini North Primary Mirror: Gemini.edu][Gemini North: OpenStax]
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Liquid Mirrors

[Paul Hickson, University of British Columbia]

Fact: A rotating liquid has a parabolic surface (under gravity).

 exactly the surface needed for a telescope.

 Rotating liquid mercury makes an excellent mirror. 

Benefits:

 About 1/10th the cost of a 

solid mirror.

 Much lighter than a solid 

mirror.

 Good for star surveys.

Downsides

 Telescope must be pointed 

vertically upwards.

 Limited star tracking.

 Mercury is toxic.

Large Zenith Telescope: 6 m diameter.



Segmented Telescopes

Problem: A single mirror larger than 8 m will experience significant sag issues.

Solution: Segment the mirror into smaller sections for easier support.



Segmented Telescopes

Problem: A single mirror larger than 8 m will experience significant sag issues.

Solution: Segment the mirror into smaller sections for easier support.

36-segment mirror of the Keck telescope (Hawaii)
[by SiOwl - Own work, CC BY 3.0, Wikipedia]

18-segment mirror of the future 

James Webb Space Telescope.

[NASA, Wikipedia]



Diffraction

An apertured wave will spread out.
 Small aperture gives a large spreading angle.

 Large aperture gives a small spreading angle.

wavelength

aperture

[Source; J. K. Nelson, William & Mary]



Resolving Power

The minimum resolvable angle is fixed by the aperture of the 

telescope, i.e. the mirror size.

1 2

For objects that are really close together, magnifying the image cannot 

help resolve two objects right next to each other.

 The spot size is magnified the same as the separations.
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Resolving Power: Rayleigh Criterion

The minimum resolvable angle is fixed by the aperture of the 

telescope, i.e. the diameter of the primary mirror or lens size.
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radians wavelength in meters



Resolving Power: Rayleigh Criterion

The minimum resolvable angle is fixed by the aperture of the 

telescope, i.e. the diameter of the primary mirror or lens size.

𝜃

The angular resolution of a telescope, i.e. resolving power, 

is given by:

star telescope

𝜃𝑚𝑖𝑛 = 1.22
𝜆

𝐷
SI units: 

radians wavelength in meters

diameter in meters

𝜃𝑚𝑖𝑛, 𝑎𝑟𝑐𝑠𝑒𝑐𝑜𝑛𝑑 = 0.000252
𝜆𝑛𝑚
𝐷𝑚

More useful units:

wavelength in 

nanometers

angular resolution 

in arcseconds



What’s an arcsecond ?

1 degree = 1/360th of a circle = 1 ×
2𝜋

360
= 0.017453 rads

1 arcminute = 1/60th of a degree

1 arcsecond = 1/60th of 1 arcminute = 1/3600th of a degree

1 milli-arcsecond = 1 mas = 1/1000th of 1 arcsecond

1 micro-arcsecond = 1 µas = 1/106 of 1 arcsecond

There are “2” radians in a circle
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There are “2” radians in a circle

Examples

Angular size of Moon = 31 arcminutes = 31′ ~ 0.5

Angular size of Jupiter = 30 − 50 arcseconds = 30′′ − 50′′

Angular size of Proxima Centauri = 0.001′′ = 1 mas  (nearest star: 4.2 ly)

Angular size of Betelgeuse ≃ 0.05′′ = 50 mas (very large star: 640 ly) 



Atmospheric Turbulence

Atmospheric turbulence limits optical angular resolution to 0.5′′
(0.5 arcseconds)

Problem
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 Put telescope in space … very expensive, difficult.
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Atmospheric Turbulence

Atmospheric turbulence limits optical angular resolution to 0.5′′
(0.5 arcseconds)

Problem

 Get rid of atmosphere (mountain tops help).

 Put telescope in space … very expensive, difficult.

Solution #1

 Adaptive optics

 Account for atmospheric fluctuations and remove effect from image.

 Keep telescope on ground … less expensive, but challenging.

Solution #2



Adaptive Optics

Basic Idea

 Take a point-like star (very far away) but close to the object you want to image.

 The shape of the “guide star” fluctuates due to atmospheric turbulence.

 Actively deform your mirror (slightly) to eliminate shape fluctuations.

 Guide star becomes a point star now (due to mirror deformation feedback).

 Often deform the secondary mirror.

 The main object becomes undistorted.
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Laser Guide Star

 If there is no nearby point-like star, then a laser can 

create an artificial guide star.

 The laser excites sodium atoms in the upper 
atmosphere (altitude >50 km) to create artificial “star.” 

[By ESO/Yuri Beletsky (ybialets at eso.org)]



Adaptive Optics Images

without AO with AO

[by Heidi B. Hammel and Imke de Pater]


