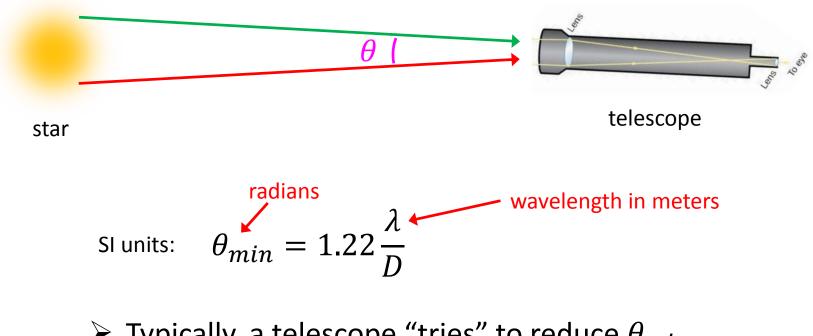

Today's Topics

Monday, September 30, 2019 (Week 5, lecture 13) – Chapter 6.

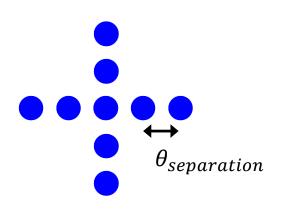
- 1. Adaptive optics
- 2. Interferometry
- 3. CCD cameras
- 4. Telescopes by wavelength


Angular resolution (or resolving power) θ_{min}

The minimum angle that a telescope can see, i.e. it's the <u>"angular pixel</u>" size.

Angular resolution (or resolving power) θ_{min}

The minimum angle that a telescope can see, i.e. it's the <u>"angular pixel</u>" size.


- > Typically, a telescope "tries" to reduce θ_{min}
- \succ Bigger diameter D decreases θ_{min}
- \succ Shorter wavelength λ decreases θ_{min}

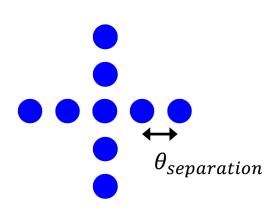
Angular resolution (or resolving power) θ_{min}

The minimum angle that a telescope can see, i.e. it's the <u>"angular pixel</u>" size.

Key point

If an object is smaller (in angle) than the angular resolution θ_{min} , then it shows up as a "blob" of angular size θ_{min} .

Telescope image for $\theta_{separation} \gg \theta_{min}$


Stars in "plus" pattern

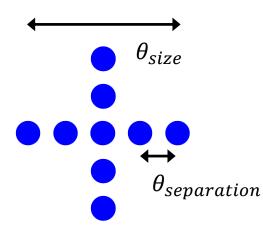
Angular resolution (or resolving power) θ_{min}

The minimum angle that a telescope can see, i.e. it's the <u>"angular pixel</u>" size.

Key point

If an object is smaller (in angle) than the angular resolution θ_{min} , then it shows up as a "blob" of angular size θ_{min} .

Stars in "plus" pattern


Telescope image for $\theta_{separation} \sim \theta_{min}$

Angular resolution (or resolving power) θ_{min}

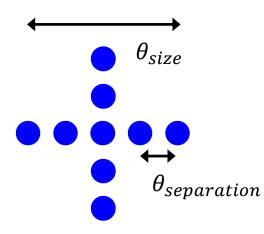
The minimum angle that a telescope can see, i.e. it's the <u>"angular pixel</u>" size.

Key point

If an object is smaller (in angle) than the angular resolution θ_{min} , then it shows up as a "blob" of angular size θ_{min} .

Stars in "plus" pattern

Telescope image for $\theta_{separation} < \theta_{min} < \theta_{size}$


Angular resolution (or resolving power) θ_{min}

The minimum angle that a telescope can see, i.e. it's the <u>"angular pixel</u>" size.

Key point

If an object is smaller (in angle) than the angular resolution θ_{min} , then it shows up as a "blob" of angular size θ_{min} .

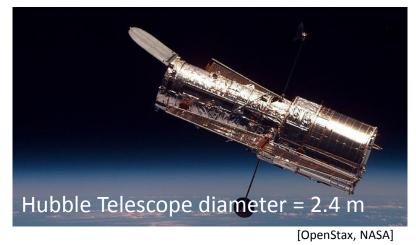
Telescope image for $\theta_{separation} \ll \theta_{min} \sim \theta_{size}$

Stars in "plus" pattern

Atmospheric Turbulence

Problem [Recall: Gemini Telescope has an angular resolution of $\theta_{min} \simeq 0.016''$]

Atmospheric turbulence limits optical angular resolution to 0.5" (0.5 arcseconds)


Atmospheric Turbulence

Problem [Recall: Gemini Telescope should have an angular resolution of $\theta_{min} \simeq 0.016''$]

Atmospheric turbulence limits optical angular resolution to 0.5" (0.5 arcseconds)

Solution #1

- Get rid of atmosphere (mountain tops help).
- Put telescope in space ... very expensive, difficult.

Atmospheric Turbulence

[Recall: Gemini Telescope should have an angular resolution of $\theta_{min} \simeq 0.016''$] **Problem**

Atmospheric turbulence limits optical angular resolution to 0.5''(0.5 arcseconds)

Solution #1

- \succ Get rid of atmosphere (mountain tops help).
- \blacktriangleright Put telescope in space ... very expensive, difficult.

Solution #2

Adaptive optics

[OpenStax, NASA]

 \rightarrow Account for atmospheric fluctuations and remove effect from image.

Keep telescope on ground ... less expensive, but challenging.

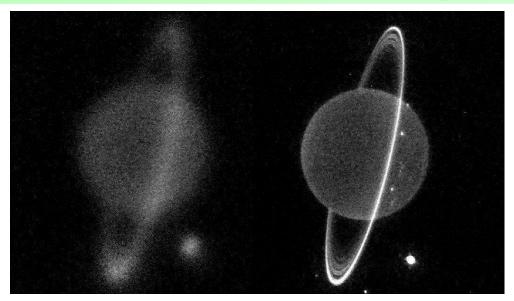
Adaptive Optics

Basic Idea

- Take a point-like star (very far away) but close to the object you want to image.
- The shape of the "guide star" fluctuates / "twinkles" due to atmospheric turbulence.
- Actively deform your mirror (slightly) to eliminate shape fluctuations.
 - \rightarrow Guide star becomes a point star now (due to mirror deformation feedback).
 - \rightarrow Often deform the secondary mirror.
 - \rightarrow Feedback deformation rate: 100-1000 Hz.
- The main object becomes undistorted.

Adaptive Optics

Basic Idea


- Take a point-like star (very far away) but close to the object you want to image.
- The shape of the "guide star" fluctuates / "twinkles" due to atmospheric turbulence.
- Actively deform your mirror (slightly) to eliminate shape fluctuations.
 - \rightarrow Guide star becomes a point star now (due to mirror deformation feedback).
 - \rightarrow Often deform the secondary mirror.
 - \rightarrow Feedback deformation rate: 100-1000 Hz.
- The main object becomes undistorted.

Laser Guide Star

- If there is no nearby point-like star, then a laser can create an artificial guide star.
- The laser excites sodium atoms in the upper atmosphere (altitude >50 km) to create artificial "star."

Adaptive Optics Images

without AO

with AO

Planet: Uranus (it has rings!)

[by Heidi B. Hammel and Imke de Pater]

Milky Way center

Adaptive Optics: Past & Present

History

- Developed by astronomy & military communities.
- First proposed in 1953 by Horace Babcock (astronomer).
- Robert Leighton (CalTech) implemented the first system in 1957.
- 1970s: first wave of large scale use in astronomy.
- Present: Adaptive optics are standard equipment at large observatories

Freeman Dyson, IAS Princeton (JASON: developed theory)

Claire Max, UC Santa Cruz (JASON: laser guide stars)

Adaptive Optics: Past & Present

History

- Developed by astronomy & military communities.
- First proposed in 1953 by Horace Babcock (astronomer).
- Robert Leighton (CalTech) implemented the first system in 1957.
- 1970s: first wave of large scale use in astronomy (many contributors).
- Present: Adaptive optics are standard equipment at large observatories

Present

Wikipedia: iberror - Flickr, CC BY-SA 2.0

Freeman Dyson, IAS Princeton (JASON: developed theory)

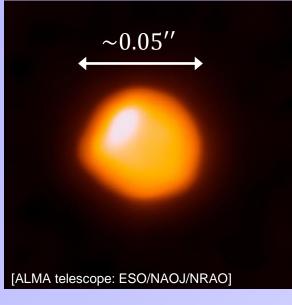
Claire Max, UC Santa Cruz (JASON: laser guide stars)

[In theory: $\theta_{min} \simeq 0.016^{\prime\prime}$]

- > Gemini telescopes have an angular resolution of $\theta_{min} \simeq 0.05''$ in the near-IR (1.6 μ m).
- Gemini telescopes uses 5 laser guide stars and 3 deformable mirrors !!!
- > Adaptive optics work best in the infrared (competitive with space-based telescopes).
- > For visible light, space-based telescopes have better angular resolution.

Image of **Betelgeuse**

[ALMA telescope: ESO/NAOJ/NRAO]


 $\lambda = 0.89$ mm, f = 338 GHz

(mm-wave) (microwave)

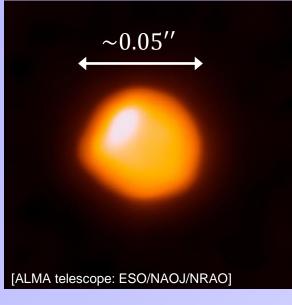
Constellation: Orion

Image of <u>Betelgeuse</u>

 $\lambda = 0.89$ mm, f = 338 GHz

(mm-wave) (microwave)

The white "hot" feature is about 1/5 of the size of the star, i.e. 0.01''.


→ Angular resolution must be better than 0.01". (5 times better than Gemini telescope)

Constellation: Orion

Question: How did the angular resolution get this good ?

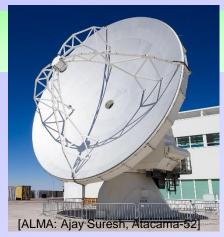
Image of <u>Betelgeuse</u>

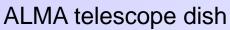
 $\lambda = 0.89$ mm, f = 338 GHz

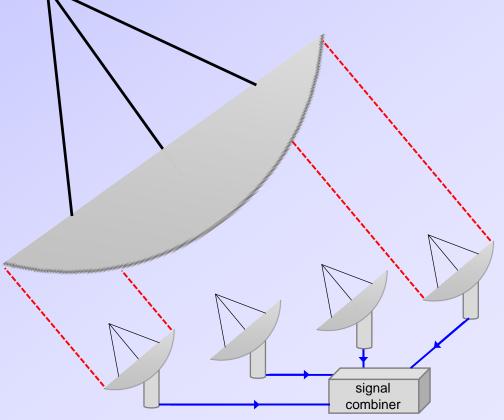
(mm-wave) (microwave)

The white "hot" feature is about 1/5 of the size of the star, i.e. 0.01''.

→ Angular resolution must be better than 0.01". (5 times better than Gemini telescope)

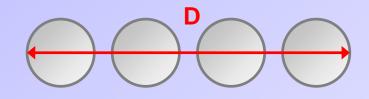

Constellation: Orion


Question: How did the angular resolution get this good ? Answer: Interferometric array of telescopes.


Telescope Interferometry

Basic Idea

- > You **combine** the signal **waves** from multiple telescopes.
- Important: the signal waves must stay in-sync.



Telescope Interferometry

Basic Idea

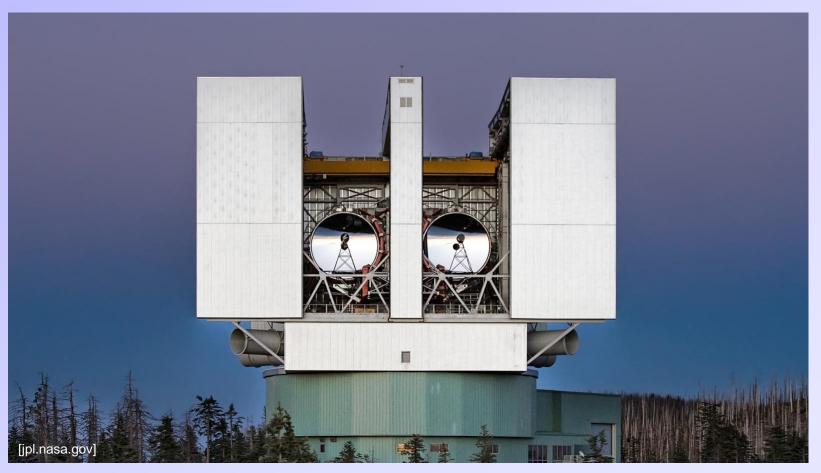
- You combine the signal waves from multiple telescopes.
- Important: the signal waves must stay in-sync.
- It is like having pieces of a much larger mirror.
- Gets around the aperture limit by making a giant composite mirror.
- The aperture is now the "span" of the mirrors (D).



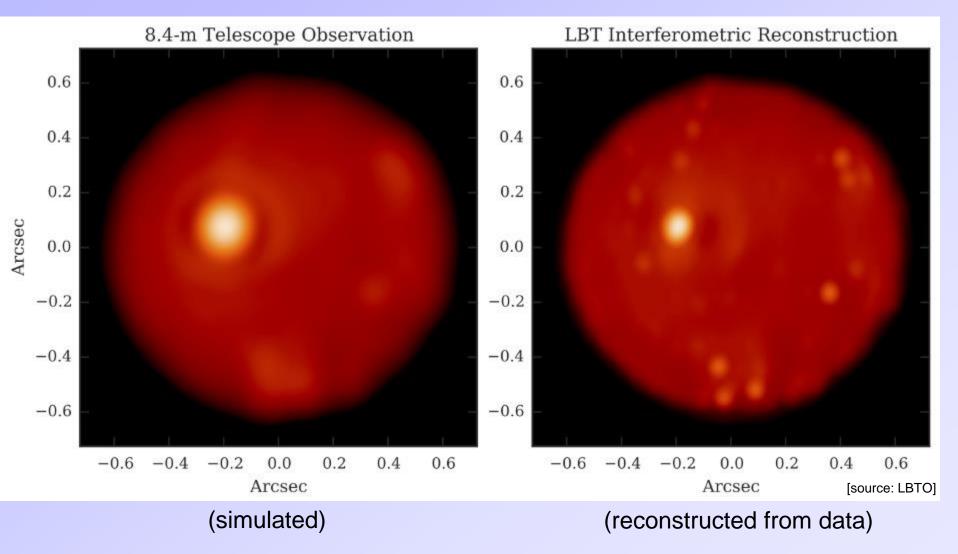
 The collection power is the combined area of these individual mirror.

ALMA radio telescope array

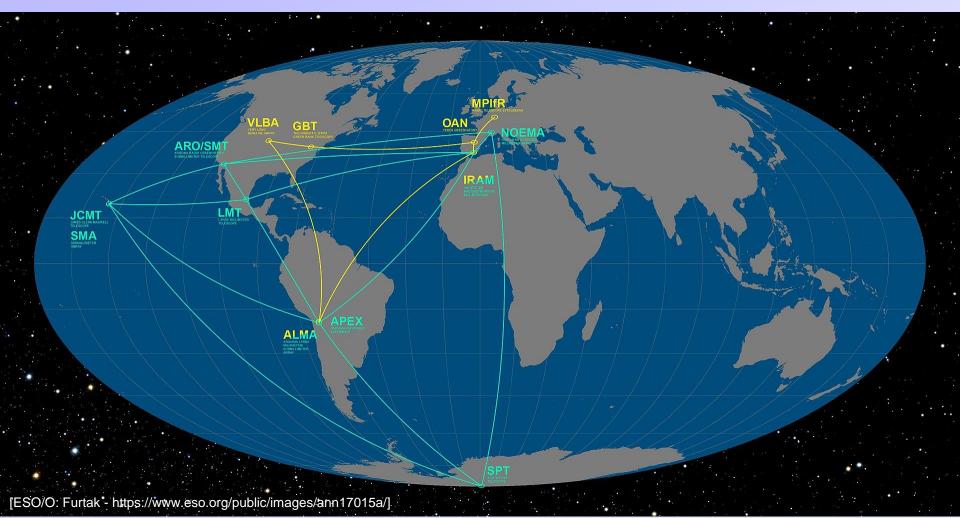
- > Wavelength: λ = 0.3 9.6 mm.
 > 66 dishes with 7-12 m diameters.
 > Dish separation up to 16 km.
- > Atacama plateau, Chile.
- > Multinational collaboration.
- > \$1.5 billion USD.


Large Binocular Telescope

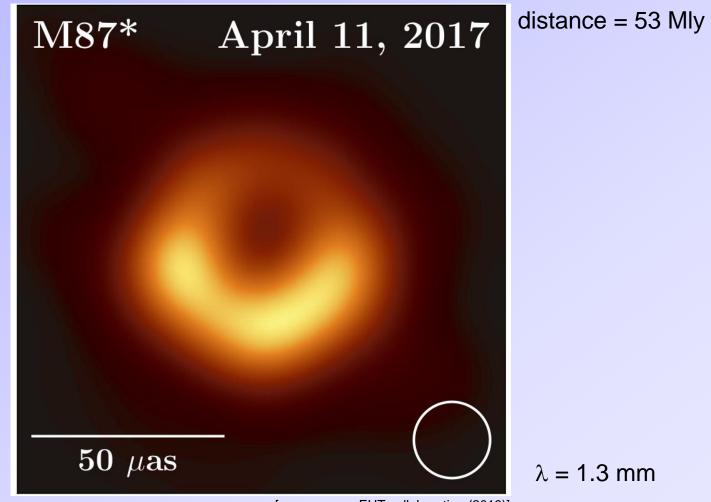
[jpl.nasa.gov]


Large Binocular Telescope

- Two 8.4 m mirrors
- Produces images with the resolution of a 23 m telescope (interferometer).
- Angular resolution $\theta_{min} \simeq 0.02'' = 20 \text{ mas}$ for a wavelength of $\lambda = 2.2 \text{ }\mu\text{m}$.
- In Arizona at an altitude of 3200 m (10,500 ft).


Large Binocular Telescope

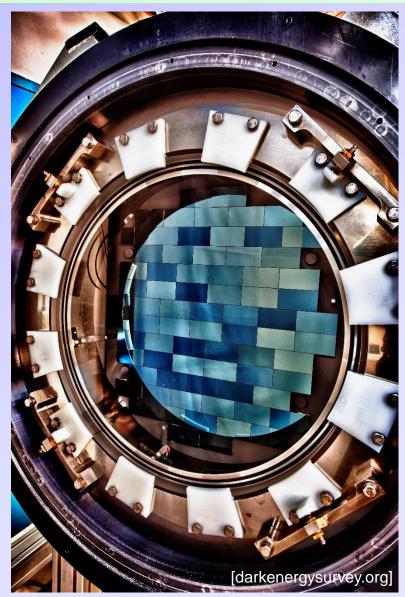
Volcanos on Io (moon of Jupiter) observed at $\lambda = 3-5 \ \mu m$ (infrared)


Event Horizon Telescope

- Network of 8 radio telescopes spread over entire planet.
- Wavelength: $\lambda \sim 1$ mm.

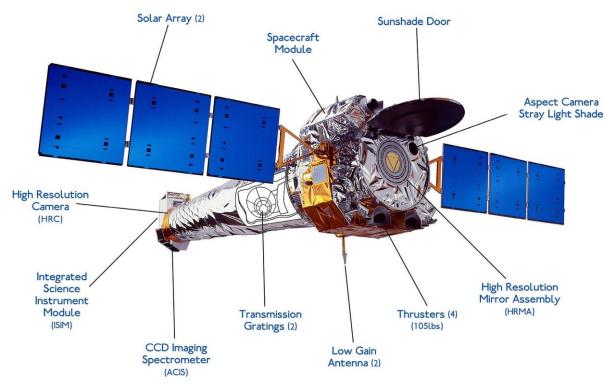
Event Horizon Telescope

Super massive black hole at center of M87 galaxy



[aasnova.org, EHT collaboration (2019)]

Theoretical angular resolution of EHT: $\theta_{min} \sim 25 \ \mu as = 0.000025''$


CCD Cameras

- CCD = Charge Coupled Device
- Standard digital camera sensor
- Wavelength
 - \rightarrow can cover X-ray to IR.
- Efficiency: 30-90% of photons detected (human eye ~ 20% in dark).
- Data is stored on a computer for later analysis (often made public).
- Often combined with a spectrometer.
- Does not work microwaves and radio-waves (antenna sensor).

CCD array for Dark Energy Survey camera

Chandra X-ray Telescope

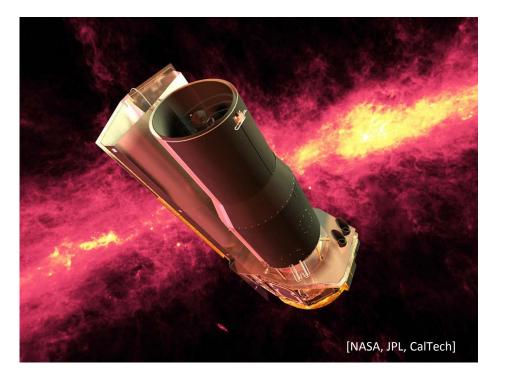
[NASA/CXC/NGST - http://chandra.harvard.edu]

Tycho's supernova in X-ray (red & blue) Stars are optical.

Hubble Space Telescope

{By Ruffnax (Crew of STS-125) - http://catalog.archives.gov]

Wavelengths: near-IR, visible, ultraviolet.


Main mirror diameter: D = 2.4 m

Angular resolution: $\theta_{min} \sim 0.05^{\prime\prime} = 50 \ mas$

"pillars of creation" in the Eagle Nebula (Serpens constellation, northern hemisphere)

Spitzer Telescope

[NASA, JPL, CalTech, U. of Arizona] Helix Nebula: constellation Aquarius.

Wavelengths: mid-infrared to far-infrared.

Main mirror diameter: D = 0.85 m

Angular resolution: $\theta_{min} \sim 1^{\prime\prime}$ at 3.6 μ m $\theta_{min} \sim 48^{\prime\prime}$ at 160 μ m

Helix Nebula: constellation Aquarius. \rightarrow distance = 600 ly.

blue = $3.6 - 4.5 \mu m$, green = $5.8 - 8 \mu m$, red = $24 \mu m$