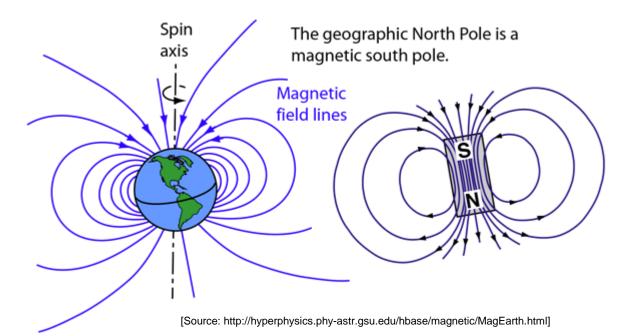
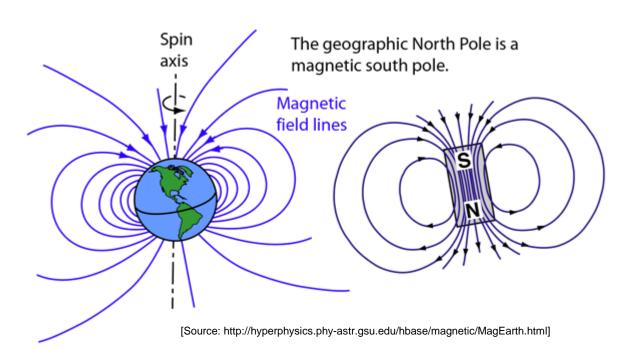
Today's Topics

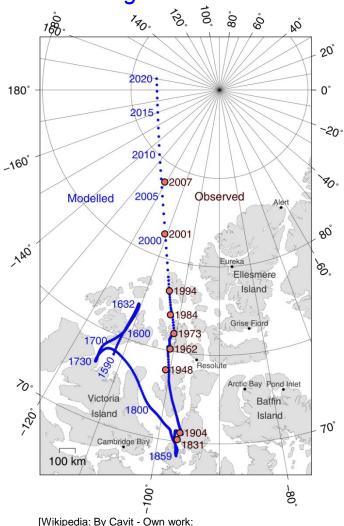

Friday, October 11, 2019 (Week 6, lecture 18) – Chapter 8.

1. Magnetosphere

2. Atmosphere


Earth's Magnetic Field

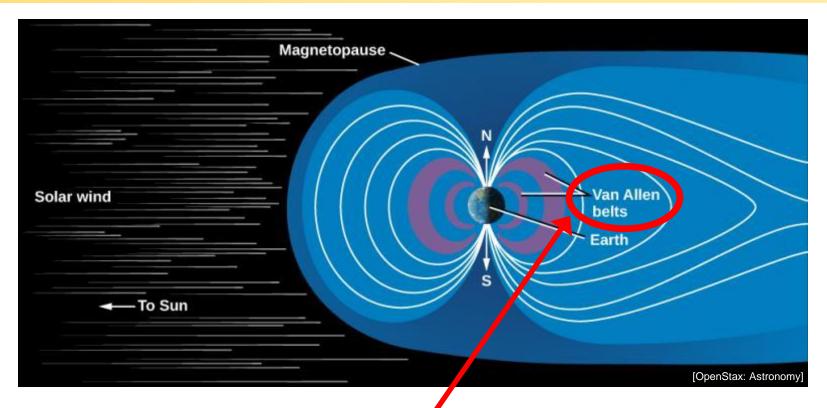
- Earth has a <u>magnetic field</u> generated by electrical current in its core.
- The magnetic is <u>not</u> aligned with Earth's rotation axis.
- ➢ 0.3-0.5 Gauss at surface.



Earth's Magnetic Field

- Earth has a <u>magnetic field</u> generated by electrical current in its core.
- The magnetic is <u>not</u> aligned with Earth's rotation axis.
- 0.3-0.5 Gauss at surface.
- The magnetic pole drifts over time and flips on a time scale of 0.1 – 1 million years.

Earth's magnetic north vs time


Observed pole positions taken from Newitt et al., "Location of the North Magnetic Pole in April 2007", Earth Planets Space, 61, 703–710, 2009 Modelled pole positions taken from the National Geophysical Data Center, "Wandering of the Geomagnetic Poles"Map created with GMT, CC BY 4.0]

Magnetosphere

- Earth's magnetic field screens the planet from charged particles emitted by the Sun (i.e. solar wind).
- The Earth's magnetic field deflects the charged particles into spiral trajectories and slows them down.

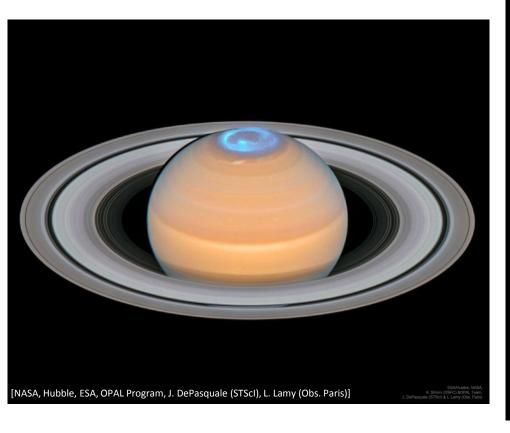
Magnetosphere

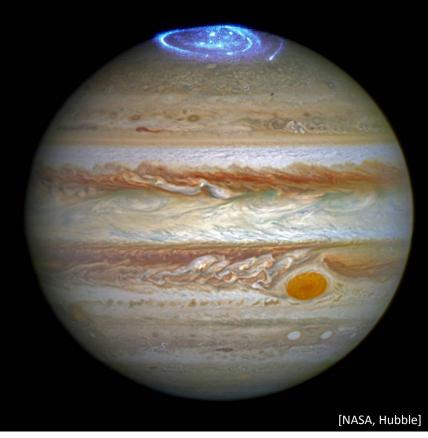
Charged particles are trapped by magnetic field in the Van Allen radiation belts.

- Earth's magnetic field screens the planet from charged particles emitted by the Sun (i.e. solar wind).
- The Earth's magnetic field deflects the charged particles into spiral trajectories and slows them down.

Aurora Borealis

Basic physics


- Solar wind charged particles are directed by the Earth's magnetic field into the atmosphere.
- Atmosphere molecules/atoms are ionized, excited, and generate light (red: H, green: O).


Aurora Australis

NASA IMAGE satellite Aurora Australis (south pole)

Aurora on Jupiter and Saturn

Hubble Space telescope images: UV image overlaid on an optical image

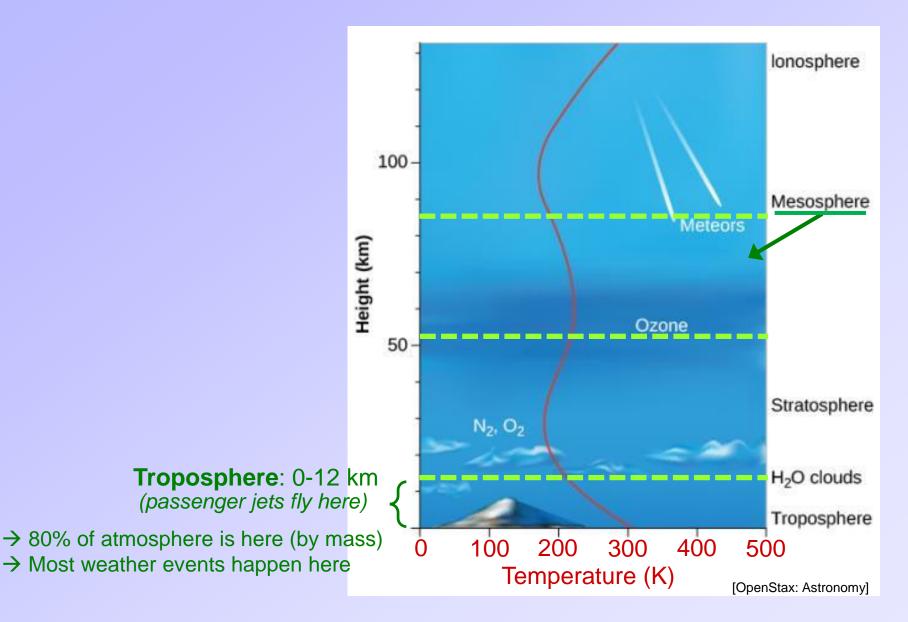
Earth's Atmosphere

The atmosphere forms the outer layer of the planet.

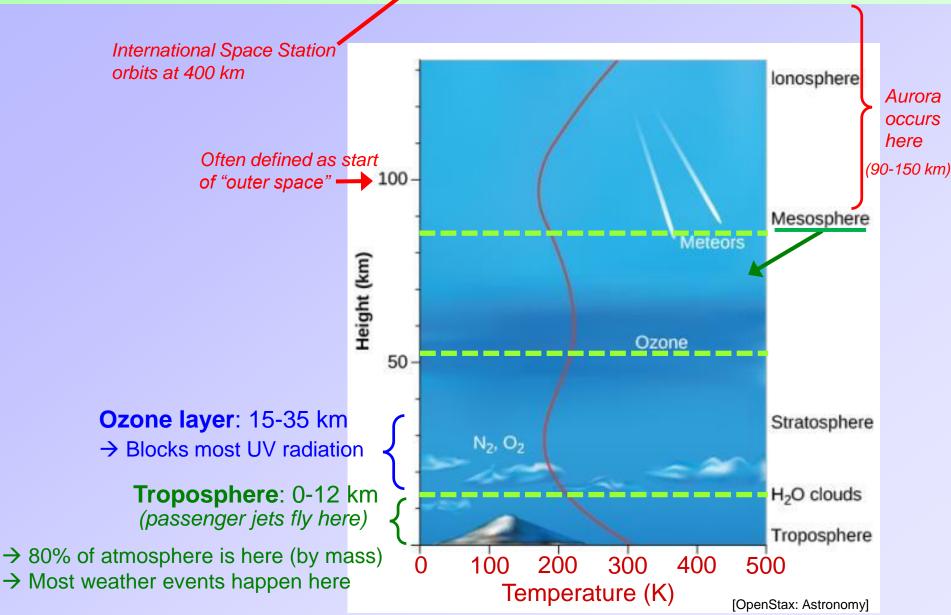
- \rightarrow It's what you see from outer space.
- \rightarrow It's where most of life is (plus oceans).
- \rightarrow It's where we live.

Primary Composition

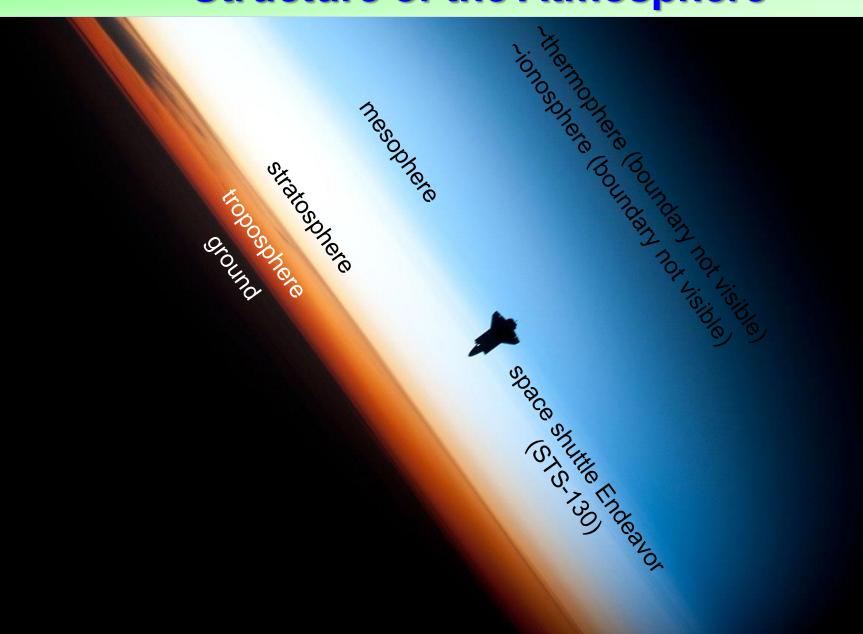
78 % nitrogen gas (N_2) 21 % oxygen gas (O_2) 1 % argon gas (Ar) 0.04% carbon dioxide gas (CO_2) 0-4% water vapor (H_2O) – variable


Trace gases

Neon (Ne) Helium (He) Methane (CH_4) Krypton (Kr) Ozone (O_3)



Earth as seen from Apollo 17


Structure of the Atmosphere

Structure of the Atmosphere

Structure of the Atmosphere

[NASA, International Space Station]

Nitrogen (N₂): 78 %

Outgassing from Earth interior via volcanoes

 \rightarrow Nitrogen does not react easily.

Nitrogen (N₂): 78 %

Outgassing from Earth interior via volcanoes \rightarrow Nitrogen does not react easily.

Oxygen (O₂): 21 %

Oxygen from CO₂ is released by plants via *photosynthesis*. Oxygen from H₂O is released by *cyanobacteria*. \rightarrow Oxygen is <u>very reactive</u> and is <u>continually replenished</u>.

Nitrogen (N₂): 78 %

Outgassing from Earth interior via volcanoes → Nitrogen does not react easily.

Oxygen (O₂): 21 %

Oxygen from CO_2 is released by plants via *photosynthesis*. Oxygen from H_2O is released by *cyanobacteria*. \rightarrow Oxygen is <u>very reactive</u> and is <u>continually replenished</u>.

Argon (Ar): 1 %
Radioactive decay of potassium-40.
→ Argon does not react (noble gas).

Nitrogen (N₂): 78 %

Outgassing from Earth interior via volcanoes → Nitrogen does not react easily.

Oxygen (O₂): 21 %

Oxygen from CO₂ is released by plants via *photosynthesis*. Oxygen from H₂O is released by *cyanobacteria*. \rightarrow Oxygen is <u>very reactive</u> and is <u>continually replenished</u>.

Argon (Ar): 1 %
Radioactive decay of potassium-40.
→ Argon does not react (noble gas).

Carbon dioxide (CO₂): 0.04 %

 CO_2 is released by outgassing, organic decomposition, respiration. CO_2 is released by *combustion/oxidation* (fossil fuels, wildfires). $\rightarrow CO_2$ reacts when dissolved in water: reaction with calcium \rightarrow <u>limestone</u>.

Tom Greene, CW foundation

Nitrogen (N₂): 78 %

Outgassing from Earth interior via volcanoes → Nitrogen does not react easily.

Oxygen (O₂): 21 %

Oxygen from CO₂ is released by plants via *photosynthesis*. Oxygen from H₂O is released by *cyanobacteria*. \rightarrow Oxygen is <u>very reactive</u> and is <u>continually replenished</u>.

Argon (Ar): 1 %
Radioactive decay of potassium-40.
→ Argon does not react (noble gas).

Carbon dioxide (CO₂): 0.04 %

 CO_2 is released by outgassing, organic decomposition, respiration. CO_2 is released by *combustion/oxidation* (fossil fuels, wildfires). $\rightarrow CO_2$ reacts when dissolved in water: reaction with calcium \rightarrow <u>limestone</u>.

Water (H₂O): 0-4 %

Water vapor comes primarily from *ocean evaporation*. → Water is mildly reactive, excellent catalyst.

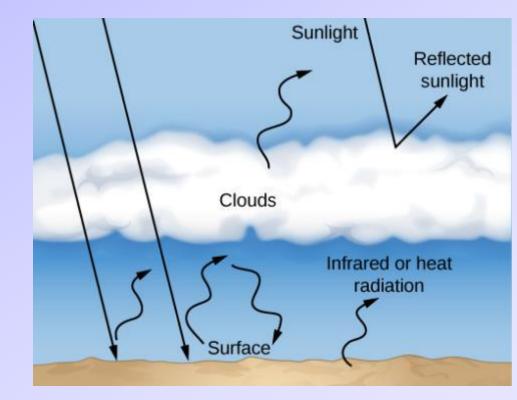
Ozone (O₃): trace quantities

Ozone is created-destroyed by UV light: $O_2 + UV \rightarrow 2O$, $O_2 + O \rightarrow O_3$, $O_3 + UV \rightarrow O_2 + O$

Comparison with Venus & Mars

	[NASA] Venus	Earth	IESAJ Mars
Nitrogen	3.5 %	78 %	2.6 %
Oxygen	trace	21 %	0.17 %
Argon	0.005 %	1 %	1.9 %
Carbon dioxide	96.5 %	0.04 %	95 %
water	trace	0-4 %	0.03 %

Earth's atmosphere is **<u>not</u>** CO₂ because of *life*

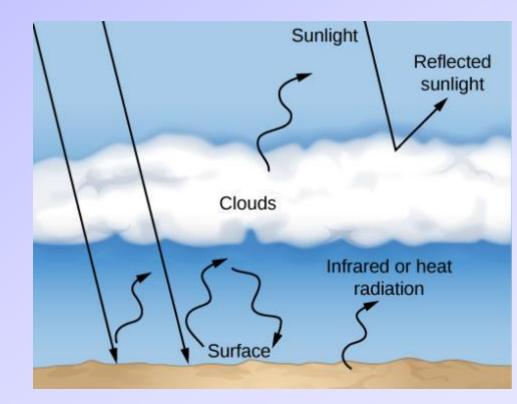

The Martian and Venusian atmospheres are dominated by carbon dioxide.

Atmospheric Temperature

The Greenhouse Effect

How it works:

- Sunlight penetrates atmosphere and *heats surface*.
- The heated surface re-radiates in the infrared.


Atmospheric Temperature

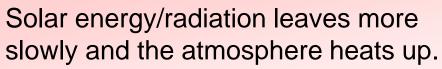
The Greenhouse Effect

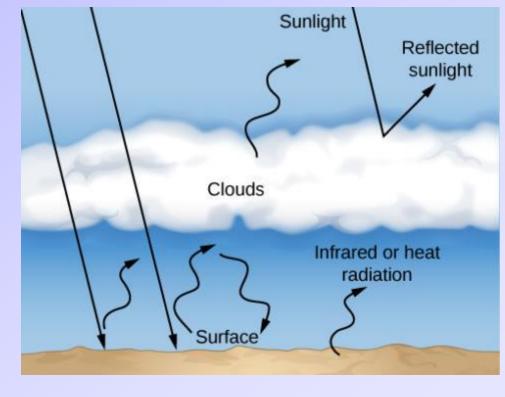
How it works:

- Sunlight penetrates atmosphere and *heats surface*.
- The heated surface re-radiates in the infrared.
- The infrared radiation is absorbed, stored, converted to heat, and reradiated by greenhouse gases.
- → Infrared light is trapped in lower atmosphere and has difficulty exiting the planet.

Note: **Clouds** also help block the re-radiation of infrared radiation.

Atmospheric Temperature


The Greenhouse Effect


How it works:

- Sunlight penetrates atmosphere and *heats surface*.
- The heated surface re-radiates in the infrared.
- The infrared radiation is absorbed, stored, converted to heat, and reradiated by greenhouse gases.
- → Infrared light is trapped in lower atmosphere and has difficulty exiting the planet.

Note: **Clouds** also help block the re-radiation of infrared radiation.



Greenhouse Gases

Primary Greenhouse Gases on Earth

- Water, H₂O (+ clouds)
 → contribution: 36-72 %
- Carbon dioxide, CO₂
 → contribution: 9-26 %
- Methane, CH₄
 → contribution: 4-9 %
- Ozone, O₃
 - \rightarrow contribution: 3-7 %

Other greenhouse gases

- Nitrous oxide (N₂O)
- Chlorofluorocarbons (CFCs).

The Greenhouse Effect

comparison with Mars & Venus

	[NASA] Venus	Image: Constraint of the second se	ESAJ Mars	
Temperature with greenhouse effect	470° C	15° C	– 50° C	
Temperature without <u>greenhouse effect</u> (estimate)	- 40° C	– 16° C	– 56° C	
	low temperature predic because of <u>high albedo</u> i.e. it's fairly reflective	o. Gre	Greenhouse effect is small because Mars has a thin atmosphere.	