Astrophysics Colloquium

Dr. Jorge Piekarewicz Florida State University

Nuclear Astrophysics in the New Era of Multimessenger Astronomy

One of the overarching questions animating nuclear physics today is "How does subatomic matter organize itself". **Neutron stars** are cosmic laboratories uniquely poised to answer this fundamental question.

Astrophysics Colloquium

EM waves Neutrinos Gravitational waves

Dr. Jorge Piekarewicz Florida State University

Nuclear Astrophysics in the New Era of Multimessenger Astronomy

One of the overarching questions animating nuclear physics today is "How does subatomic matter organize itself". **Neutron stars** are cosmic laboratories uniquely poised to answer this fundamental question.

Interlude 1 Talks Humanity in the Solar System

Monday, November 4

Team 1: Keely Wiese, Caitlin Marat, Ryan Posthumus, Jonathan Peters

Team 2: Sam Omohundro, Gujie Shen, Giulia Eddy, Brian Wu

Team 3: Berk Donmez, Masaccio Braun, Nicholas Costa, Haowen Liu

Team 4: Yang Wang, Chumei Wei, Yehan Wu, Rongbiao Wang

Wednesday, November 6

Team 5: Jack Cone, Matt Wydra, Thomas Johnson, Matthew Cheng
Team 6: Sam Burridge, Drew Laird, Sal Rego, Thomas Olmsted
Team 7: Abigail Hartless, Caroline Kepler, Makiyah Rifenberg, Sophia Zaman
Team 8: Owen Guch, Shane Evanson, Saylor Bane, Paul Anderson
Send me your PowerPoint or PDF talk by 8am Monday/Wednesday morning.

Interlude 1 Talks Humanity in the Solar System

Monday, November 4

Team 1: Keely Wiese, Caitlin Marat, Ryan Posthumus, Jonathan Peters

Team 2: Sam Omohundro, Gujie Shen, Giulia Eddy, Brian Wu

Team 3: Berk Donmez, Masaccio Braun, Nicholas Costa, Haowen Liu

Team 4: Yang Wang, Chumei Wei, Yehan Wu, Rongbiao Wang

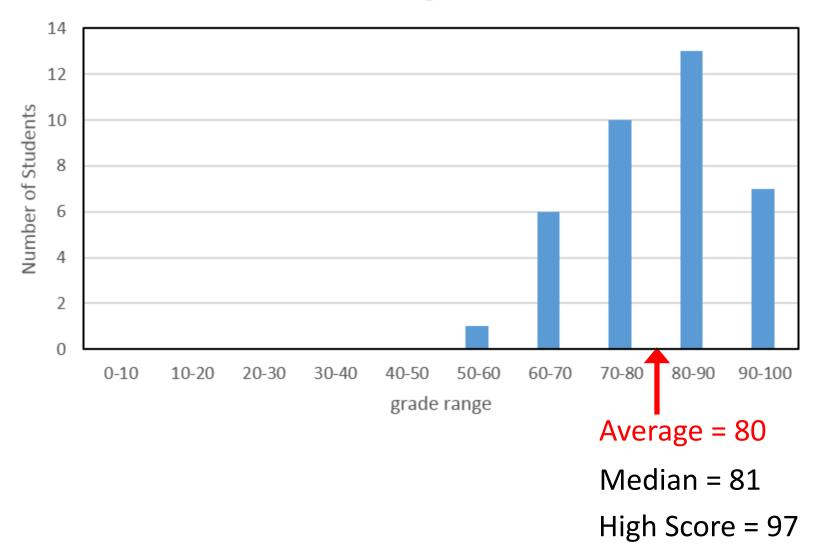
Wednesday, November 6

Team 5: Jack Cone, Matt Wydra, Thomas Johnson, Matthew Cheng
Team 6: Sam Burridge, Drew Laird, Sal Rego, Thomas Olmsted
Team 7: Abigail Hartless, Caroline Kepler, Makiyah Rifenberg, Sophia Zaman
Team 8: Owen Guch, Shane Evanson, Saylor Bane, Paul Anderson
Send me your PowerPoint or PDF talk by 8am Monday/Wednesday morning.

Reminder (for everyone): Papers are due on Friday, November 8 (next week).

Today's Topics

Friday, November 1, 2019 (Week 9, lecture 25) – Chapters 14.4, 30.1-3, 16.


0. Midterm #2

1. Life in the Solar System?

3. Our Sun

Midterm Test #2

Midterm #2: Histogram of Grades

Definitions of Life (biology) – there are many definitions (no consensus)

Definition 1

Life is considered a characteristic of something that preserves, furthers or reinforces its existence in the given environment [Wikipedia].

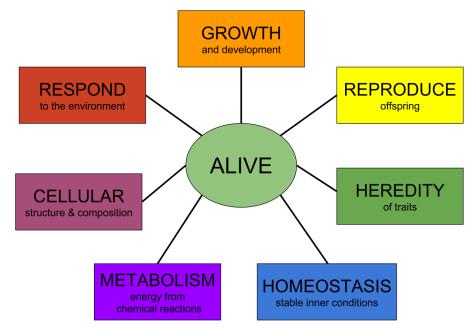
Definitions of Life (biology) – there are many definitions (no consensus)

Definition 1

Life is considered a characteristic of something that preserves, furthers or reinforces its existence in the given environment [Wikipedia].

Definition 2

Life is a self-sustained chemical system capable of undergoing Darwinian evolution [Wikipedia].

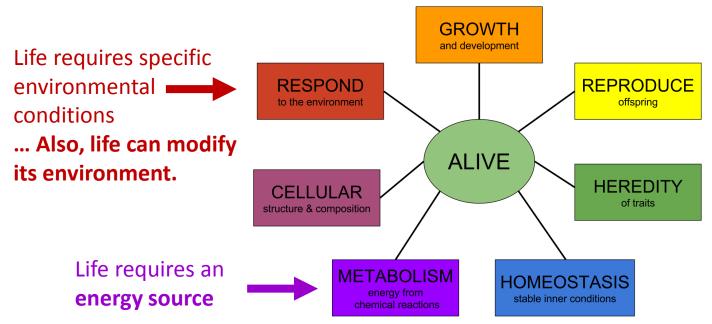

Definitions of Life (biology) – there are many definitions (no consensus)

Definition 1

Life is considered a characteristic of something that preserves, furthers or reinforces its existence in the given environment [Wikipedia].

Definition 2

Life is a self-sustained chemical system capable of undergoing Darwinian evolution [Wikipedia].


Definitions of Life (biology) – there are many definitions (no consensus)

Definition 1

Life is considered a characteristic of something that preserves, furthers or reinforces its existence in the given environment [Wikipedia].

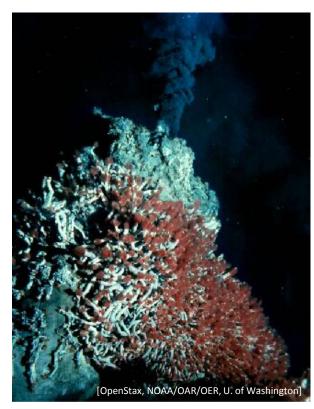
Definition 2

Life is a self-sustained chemical system capable of undergoing Darwinian evolution [Wikipedia].

What are the environmental requirements for Earth-style Life?

Ingredients for Earth-style life

- Liquid water (solvent).
- Carbon, hydrogen, nitrogen, oxygen, phosphorus, and sulfur.
- Temperature range: -25° C to 120° C.
- Not too much ionizing radiation.
- An energy source: solar energy, chemical energy, heat.


What are the environmental requirements for Earth-style Life?

Ingredients for Earth-style life

- Liquid water (solvent).
- Carbon, hydrogen, nitrogen, oxygen, phosphorus, and sulfur.
- Temperature range: -25° C to 120° C.
- Not too much ionizing radiation.
- An energy source: solar energy, chemical energy, heat.

Hot spring (Yellowstone Nat. Park): multi-colored photosynthesizing bacteria (solar energy). Central pool (92 ° C) bacteria use chemical energy.

Hydrothermal vent: chemical energy (metal sulfides).

Examples of Hardy Life

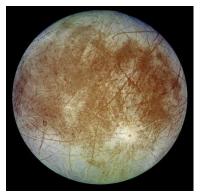
The Tardigrade (length: ~0.5 mm) can survive

- -270° C to 150° C for a few minutes.
- Vacuum to 1000 bars.
- Years of dehydration.
- 1000x lethal radiation dose of animals.

Cyanobacteria are photosynthesizing bacteria that have existed on Earth for 2.1 billion years ago (maybe longer)

Mars may have suitable conditions for life just below its surface:

- Liquid water.
- Reasonable temperature range.
- Limited ionizing radiation.


→ Methane detected in Mars' atmosphere (possible bio origin).

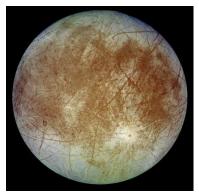
Mars may have suitable conditions for life just below its surface:

- Liquid water.
- Reasonable temperature range.
- Limited ionizing radiation.

→ Methane detected in Mars' atmosphere (possible bio origin).

[NASA/JPL/DLR: Gallileo mission, 1996]

Europa (Jupiter moon)


- Possible water ocean (under ice crust).
- Tidal heating.
- Limited ionizing radiation below surface.

Mars may have suitable conditions for life just below its surface:

- Liquid water.
- Reasonable temperature range.
- Limited ionizing radiation.

→ Methane detected in Mars' atmosphere (possible bio origin).

[NASA/JPL/DLR: Gallileo mission, 1996]

Europa (Jupiter moon)

- Possible water ocean (under ice crust).
- Tidal heating.
- Limited ionizing radiation below surface.

[NASA: Cassini mission, 2015]

Enceladus (Saturn moon)

- Likely water ocean (under ice crust).
- Tidal heating ... ?
- Limited ionizing radiation below surface.

Mars may have suitable conditions for life just below its surface:

- Liquid water.
- Reasonable temperature range.
- Limited ionizing radiation.

→ Methane detected in Mars' atmosphere (possible bio origin).

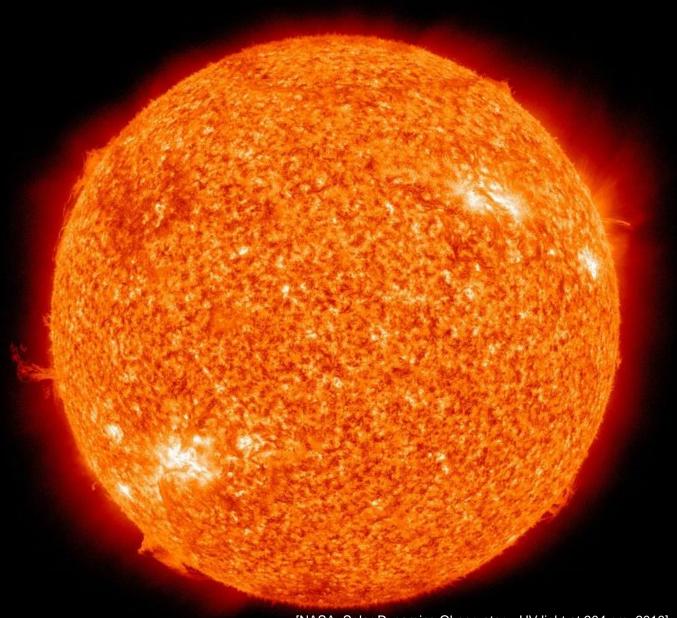
[NASA/JPL/DLR: Gallileo mission, 1996]

Europa (Jupiter moon)

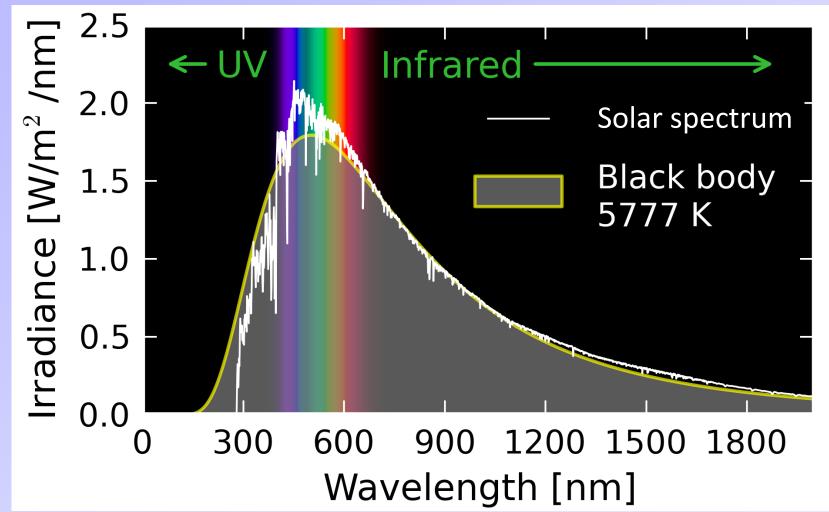
- Possible water ocean (under ice crust).
- Tidal heating.
- Limited ionizing radiation below surface.

Enceladus (Saturn moon)

- Likely water ocean (under ice crust).
- Tidal heating ... ?
- Limited ionizing radiation below surface.


[NASA: Cassini mission, 2015]

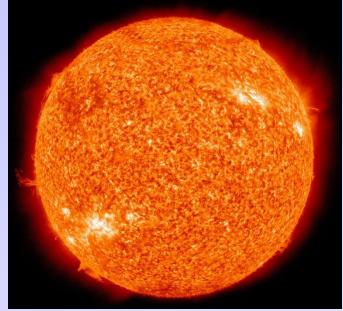
More speculative: Ganymede sub-surface water, upper atmosphere of Venus.



[NASA: Solar Dynamics Observatory, UV light at 304 nm, 2010]

Our Sun

Blackbody Radiation Source

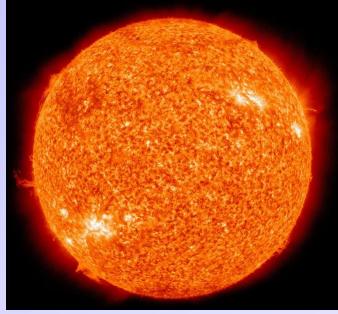


[Wikimedia Commons: Danmichaelo, public domain]

Our Sun: Surface (photosphere)

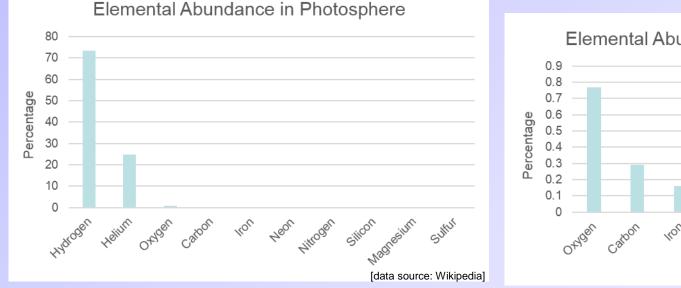
Properties

- Temperature = 5777 K (surface/photosphere)
- Substance: Plasma (electrons & nuclei are dissociated).
- Magnetosphere: ~ 1 Gauss at surface. (exception: sunspots at 3000 G)
- Rotation period: T_{equator} = 25 days, T_{poles} = 34 days.
- Rotation axis tilt: 7.25° with respect to ecliptic.

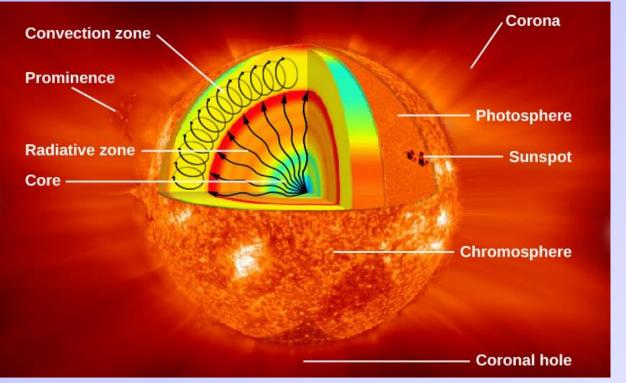


[NASA: Solar Dynamics Observatory, UV light at 304 nm, 2010]

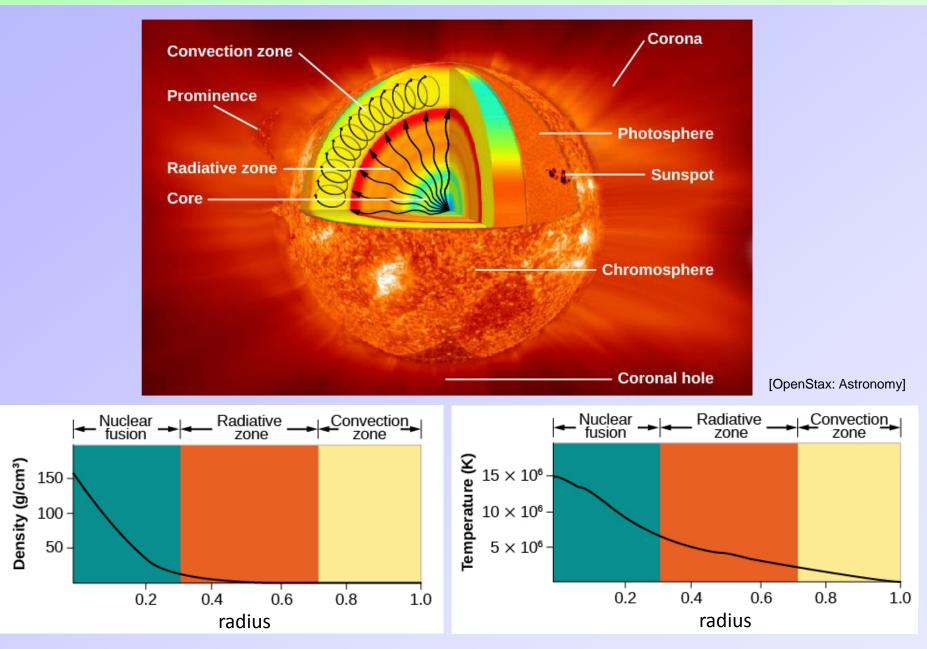
Our Sun: Surface (photosphere)


Properties

- Temperature = 5777 K (surface/photosphere)
- Substance: Plasma (electrons & nuclei are dissociated).
- Magnetosphere: ~ 1 Gauss at surface. (exception: sunspots at 3000 G)
- Rotation period: T_{equator} = 25 days, T_{poles} = 34 days.
- Rotation axis tilt: 7.25° with respect to ecliptic.


[NASA: Solar Dynamics Observatory, UV light at 304 nm, 2010]

[data source: Wikipedia]


Elemental Abundance in Photosphere

Our Sun: Structure

[OpenStax: Astronomy]

Our Sun: Structure

