Today's Topics

Monday, October 28, 2019 (Week 9, lecture 23) – Chapters 11, 12, 13.

1. Saturn

2. Uranus

3. Neptune

4. Dwarf planets

5. Asteroids & Comets

Saturn: "Lord of the Rings"

[NASA: Cassini mission, 2008]

- "Lightweight Jupiter" with rings.
 - → $M_{\text{Saturn}} \approx 0.3 \text{ M}_{\text{Jupiter}}$.
 - → $R_{Saturn} = 58,500 \text{ km} \approx 0.84 \text{ R}_{Jupiter}$.
- Almost twice as far as Jupiter.
 - → Semimajor axis: 9.5 AU (J: 5.2 AU).
 - \rightarrow Orbital period: T = 29.5 yrs (J: 11.9 yrs).

Saturn: "Lord of the Rings"

[NASA: Cassini mission, 2008]

- "Lightweight Jupiter" with rings.
 - → $M_{\text{Saturn}} \approx 0.3 \text{ M}_{\text{Jupiter}}$.
 - \rightarrow R_{Saturn} = 58,500 km \approx 0.84 R_{Jupiter}.
- Almost twice as far as Jupiter.
 - → Semimajor axis: 9.5 AU (J: 5.2 AU).
 - → Orbital period: T = 29.5 yrs (J: 11.9 yrs).

- Rotates quickly: T_{rotation} = 10.6 hrs.
- At least 82 moons.
 → Only moon in Solar System with an atmosphere: Titan.
- Giant rings.
- Large magnetosphere.

The Rings I

7 distinct ring families

- \rightarrow A, B, C are the most visible.
- \rightarrow B is the brightest (not in photo).
- \rightarrow D, F, G, and E are very faint.

Outer radius of A = 137,000 km Inner radius of C = 74,500 km

[NASA: Cassini mission, 2013]

Enhanced image of Saturn's rings (Sun is eclipsed by Saturn)

The Rings II

Ring Properties

- Mostly water ice (99.9%).
- Some silicates
- "Particle" size range: 1 cm to 10 m.
- Ring particles clump together. (mostly multi-meter scale, but up to 10 km in size)
- Thickness of rings: 10-100 m.
- Rings slowly falling into Saturn as "ring rain."
 → Rings may be gone in 100s of millions of years.

Saturn's B ring

The Rings II

Ring Properties

- Mostly water ice (99.9%).
- Some silicates
- "Particle" size range: 1 cm to 10 m.
- Ring particles clump together. (mostly multi-meter scale, but up to 10 km in size)
- Thickness of rings: 10-100 m.
- Rings slowly falling into Saturn as "ring rain."
 → Rings may be gone in 100s of millions of years.

Shepherd moons

- Moons help to keep the rings from spreading out.
 → Prometheus, Daphnis, Pan, Janus, and Epimethus.
- Moonlets within the rings also act as shepherds.
- Cryogeisers on Enceladus feed the E ring.

The Rings II

Ring Properties

- Mostly water ice (99.9%).
- Some silicates
- "Particle" size range: 1 cm to 10 m.
- Ring particles clump together. (mostly multi-meter scale, but up to 10 km in size)
- Thickness of rings: 10-100 m.
- Rings slowly falling into Saturn as "ring rain."
 → Rings may be gone in 100s of millions of years.

Shepherd moons

- Moons help to keep the rings from spreading out.
 → Prometheus, Daphnis, Pan, Janus, and Epimethus.
- Moonlets within the rings also act as shepherds.
- Cryogeisers on Enceladus feed the E ring.

Origin of the Rings

The origin and age of the rings is not well understood (i.e. open question).

Hypothesis A: Old rings

The rings are the remnant of the formation of the mini "solar system" of Saturn.

 \rightarrow Rings are very old: about as old as the Solar System, i.e. ~ 4.4 billion years old.

Hypothesis B: Young rings

The rings were formed when two icy moons **collided** or when a moon got too close to Saturn (Roche limit) and was pulled apart by **tidal forces**.

 \rightarrow Rings are relatively young: perhaps 100s of millions of years old.

The Roche limit is the orbital radius at which a gravitational bound object will be **pulled apart** by the **tidal force** from the central mass (i.e. Sun, Saturn, etc). *(gravity gradient)*

 \rightarrow The Roche limit depends on nature of body (solid, fluid, density).

 \rightarrow Proposed by Eduard Roche in 1848 (French astronomer).

Far outside the Roche limit radius, the tidal force and deformation are weak.

The Roche limit is the orbital radius at which a gravitational bound object will be **pulled apart** by the **tidal force** from the central mass (i.e. Sun, Saturn, etc). *(gravity gradient)*

 \rightarrow The Roche limit depends on nature of body (solid, fluid, density).

 \rightarrow Proposed by Eduard Roche in 1848 (French astronomer).

Close to the Roche limit radius, the tidal force and deformation are strong.

The Roche limit is the orbital radius at which a gravitational bound object will be **pulled apart** by the **tidal force** from the central mass (i.e. Sun, Saturn, etc). *(gravity gradient)*

 \rightarrow The Roche limit depends on nature of body (solid, fluid, density).

 \rightarrow Proposed by Eduard Roche in 1848 (French astronomer).

At the Roche limit radius and within it, the tidal force and deformation pull the planet/moon apart.

The Roche limit is the orbital radius at which a gravitational bound object will be pulled apart by the tidal force from the central mass (i.e. Sun, Saturn, etc). (gravity gradient)

- \rightarrow The Roche limit depends on nature of body (solid, fluid, density).
- \rightarrow Proposed by Eduard Roche in 1848 (French astronomer).

At the Roche limit radius and within it, the tidal force and deformation pull the planet/moon apart.

The Roche limit is the orbital radius at which a gravitational bound object will be **pulled apart** by the **tidal force** from the central mass (i.e. Sun, Saturn, etc). *(gravity gradient)*

 \rightarrow The Roche limit depends on nature of body (solid, fluid, density).

 \rightarrow Proposed by Eduard Roche in 1848 (French astronomer).

Within the Roche limit radius, planets/moons are pulled apart, and they also cannot form.

- \rightarrow The accretion process from planetesimals/rock piles cannot happen.
- → Saturns rings are unlikely to become moons (Roche limit \approx 75,000-150,000 km).

Roche Limit and the Icy Gas Giant

Note: Small moons can survive within the Roche limit.

- Second largest moon in Solar System.
- Thick atmosphere: surface pressure ~ 1.5 bar. Nitrogen (N2): 95-98%. Methane (CH4): 2-5%. Other hydrocarbons: trace.
- Temperature: 94 K (surface), i.e. -179° C.
 → Greenhouse effect from methane.
 → Anti-greenhouse effect from reflecting smog.

[NASA: Cassini mission, 2005, infrared 1.6-5 $\mu m]$

- Second largest moon in Solar System.
- Thick atmosphere: surface pressure ~ 1.5 bar. Nitrogen (N2): 95-98%. Methane (CH4): 2-5%. Other hydrocarbons: trace.
- Temperature: 94 K (surface), i.e. -179° C.
 → Greenhouse effect from methane.
 → Anti-greenhouse effect from reflecting smog.
- Clouds: Methane, ethane, other hydrocarbons.
 - \rightarrow Methane rain.
 - \rightarrow Cloud cover: 1-8%.
- <u>Not many craters</u>: Geologically young surface or weathered surface.
 - → Surface: Water ice and hydrocarbon ice "rocks".
 - \rightarrow Interior should be rocky.
- Hydrocarbon lakes, rivers, seas.

[NASA: Cassini mission, 2005, infrared 1.6-5 µm]

- Second largest moon in Solar System.
- Thick atmosphere: surface pressure ~ 1.5 bar. Nitrogen (N2): 95-98%. Methane (CH4): 2-5%. Other hydrocarbons: trace.
- Temperature: 94 K (surface), i.e. -179° C.
 → Greenhouse effect from methane.
 → Anti-greenhouse effect from reflecting smog.
- **Clouds:** Methane, ethane, other hydrocarbons.
 - \rightarrow Methane rain.
 - \rightarrow Cloud cover: 1-8%.
- <u>Not many craters</u>: Geologically young surface or weathered surface.
 - → Surface: Water ice and hydrocarbon ice "rocks".
 - \rightarrow Interior should be rocky.
- Hydrocarbon lakes, rivers, seas.

Surface of Titan, 2005 (Huygens lander).

- Second largest moon in Solar System.
- Thick atmosphere: surface pressure ~ 1.5 bar. Nitrogen (N2): 95-98%. Methane (CH4): 2-5%. Other hydrocarbons: trace.
- Temperature: 94 K (surface), i.e. -179° C.
 → Greenhouse effect from methane.
 → Anti-greenhouse effect from reflecting smog.
- **Clouds:** Methane, ethane, other hydrocarbons.
 - \rightarrow Methane rain.
 - \rightarrow Cloud cover: 1-8%.
- <u>Not many craters</u>: Geologically young surface or weathered surface.
 - → Surface: Water ice and hydrocarbon ice "rocks".
 - \rightarrow Interior should be rocky.
- Hydrocarbon lakes, rivers, seas.
- Target for astrobiology mission.
 → Dragonfly (NASA/JHU), launch: 2026, arrive: 2034.

Surface of Titan, 2005 (Huygens lander).

Uranus ("di

("discovered" by William Herschel, 1781)

Orbit properties

Semimajor axis = 19.2 AU. Orbital period = 84 years.

- Several times larger than Earth.
 - \rightarrow M_{Uranus} = 14.5 M_{Earth}
 - \rightarrow R_{Uranus} \approx 4 R_{Earth}
- Coldest atmosphere in Solar System: ~ 49 K.
- Atmosphere: H₂ (83%), He (15%), CH₄ (2%).
- Rotation period T_{rotation} = 17 hrs.

Orbit properties

Semimajor axis = 19.2 AU. Orbital period = 84 years.

- Several times larger than Earth.
 - \rightarrow M_{Uranus} = 14.5 M_{Earth}
 - \rightarrow R_{Uranus} \approx 4 R_{Earth}
- Coldest atmosphere in Solar System: ~ 49 K.

Uranus

- Atmosphere: H₂ (83%), He (15%), CH₄ (2%).
- Rotation period T_{rotation} = 17 hrs.
- Rotation axis is almost in orbital plane !
 → "Planet is on its side."
- 27 moons: Major moons orbit in plane of rotation!

Uranus

("discovered" by William Herschel, 1781)

Orbit properties

Semimajor axis = 19.2 AU. Orbital period = 84 years.

- Several times larger than Earth.
 - \rightarrow M_{Uranus} = 14.5 M_{Earth}
 - \rightarrow R_{Uranus} \approx 4 R_{Earth}
- Coldest atmosphere in Solar System: ~ 49 K.
- Atmosphere: H₂ (83%), He (15%), CH₄ (2%).
- Rotation period T_{rotation} = 17 hrs.
- Rotation axis is almost in orbital plane !
 → "Planet is on its side."
- 27 moons: Major moons orbit in plane of rotation!
- Magnetosphere is tilted 59° with respect to rotation axis and is off-center !!!

[Wikipedia, based on Voyager 2 data]

Uranus

("discovered" by William Herschel, 1781)

Orbit properties

Semimajor axis = 19.2 AU. Orbital period = 84 years.

- Several times larger than Earth.
 - \rightarrow M_{Uranus} = 14.5 M_{Earth}
 - \rightarrow R_{Uranus} \approx 4 R_{Earth}
- Coldest atmosphere in Solar System: ~ 49 K.
- Atmosphere: H₂ (83%), He (15%), CH₄ (2%).
- Rotation period T_{rotation} = 17 hrs.
- Rotation axis is almost in orbital plane !
 → "Planet is on its side."
- 27 moons: Major moons orbit in plane of rotation!
- Magnetosphere is tilted 59° with respect to rotation axis and is off-center !!!

Uranus's strange orientation is thought to be due to a collision with an Earth-sized protoplanet during formation of Solar System.

[Wikipedia, based on Voyager 2 data]

Neptune

Neptune was "discovered" theoretically from its gravitational effect on Uranus's orbit.

- Probably observed by Galileo 1612-13 (retrograde).
- Alexis Bouvard noticed irregularities in Uranus's motion (1820's).
- Urbain Le Verrier and John Couch Adams independently predict location of Neptune (1845-46).
- Johann Gottfried Galle observed Neptune within 1° of Le Verrier's prediction (1846).

Clouds: possibly ammonia, hydrogen sulfide.

[NASA: Voyager 2, 1989]

Neptune

Neptune was "discovered" theoretically from its gravitational effect on Uranus's orbit.

- Probably observed by Galileo 1612-13 (retrograde).
- Alexis Bouvard noticed irregularities in Uranus's motion (1820's).
- Urbain Le Verrier and John Couch Adams independently predict location of Neptune (1845-46).
- Johann Gottfried Galle observed Neptune within 1° of Le Verrier's prediction (1846).
- > Semimajor axis = 30 AU, orbital period = 165 yrs.
- 14 moons. Largest is Triton (retrograde orbit).
- Similar in size and composition to Uranus.
 - \rightarrow M_{Neptune} = 1.2 M_{uranus}
 - \rightarrow R_{Neptune} = 0.97 R_{uranus}
 - \rightarrow Rotation: T_{rotation} = 16 hrs = 0.93 T_{Uranus}
 - → Atmosphere: H_2 (80%), He (19%), CH₄ (1.5%).
 - \rightarrow Temperature: 55 K (a tad warmer than Uranus).

Clouds: possibly ammonia, hydrogen sulfide.

[NASA: Voyager 2, 1989]

Neptune

Neptune was "discovered" theoretically from its gravitational effect on Uranus's orbit.

- Probably observed by Galileo 1612-13 (retrograde).
- Alexis Bouvard noticed irregularities in Uranus's motion (1820's).
- Urbain Le Verrier and John Couch Adams independently predict location of Neptune (1845-46).
- Johann Gottfried Galle observed Neptune within 1° of Le Verrier's prediction (1846).
- > Semimajor axis = 30 AU, orbital period = 165 yrs.
- > 14 moons. Largest is Triton (retrograde orbit).
- Similar in size and composition to Uranus.
 - \rightarrow M_{Neptune} = 1.2 M_{uranus}
 - \rightarrow R_{Neptune} = 0.97 R_{uranus}
 - \rightarrow Rotation: T_{rotation} = 16 hrs = 0.93 T_{Uranus}
 - → Atmosphere: H_2 (80%), He (19%), CH₄ (1.5%).
 - \rightarrow Temperature: 55 K (a tad warmer than Uranus).
- Planet's axis is tilted 28°, but magnetosphere is tilted 47° to this axis and also off center.

Clouds: possibly ammonia, hydrogen sulfide.

[NASA: Voyager 2, 1989]

Dwarf Planets

Definition of a planet (International Astronomical Union 2006) Body orbiting the Sun with sufficient self-gravity to be spherical-like, and massive enough to have cleared its orbital neighborhood.

• Generally not satisfied by dwarf planets.

Dwarf Planets

Definition of a planet (International Astronomical Union 2006) Body **orbiting the Sun** with sufficient self-gravity to be **spherical-like**, and massive enough to have **cleared its orbital neighborhood**.

Generally not satisfied by dwarf planets.

	Well- Studied Dwarf Planet	Semimajor Axis (AU)	Orbital Eccentricity	Inclination of Orbit to Ecliptic (°)	Diameter (Earth = 1)	Mass (Earth = 1)	Mean Density (g/cm ³)
asteroid belt	Ceres	2.77	0.08	11	0.07	0.0002	2.2
Kuiper belt	Pluto	39.5	0.25	17	0.18	0.0024	1.9
	Haumea	43.1	0.19	28	0.13	0.0007	3
	Makemake	45.8	0.16	29	0.11	0.0005	2
	Eris	68.0	0.44	44	0.18	0.0028	2.5

Asteroids & Ceres

- Asteroids orbit the Sun primarily between Mars and Jupiter.
- Relatively rocky: ~ 2 g/cm³ (up to 5 g/cm³)
- Left over from formation on Solar System.
- Some are hard bodies, others are rubble piles.

Asteroids & Ceres

- Asteroids orbit the Sun primarily between Mars and Jupiter.
- Relatively rocky: ~ 2 g/cm³
 (up to 5 g/cm³)
- Left over from formation on Solar System.
- Some are hard bodies, others are rubble piles.

Lagrange Points

Gravity from Sun and planet + centripetal motion generate a somewhat attractive point

