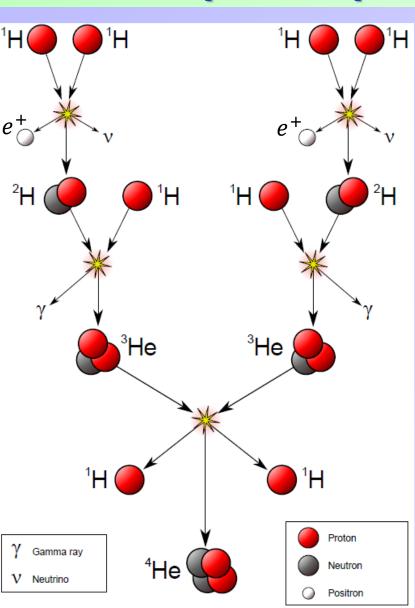
Today's Topics

Monday, October 26, 2020 (Week 10, lecture 27) – Chapters 17, 18.

- A. Solar fusion
- B. Observing the stars: brightness
- C. Star color
- D. Luminosity


Solar Fusion: proton-proton chain

9 billions years weak force

4 seconds strong force

400 years strong force

(see also Sept. 20 lecture)

(Note: 1 eV = 1.602×10^{-19} J)

 $2 \times 1.442 \text{ MeV}$ $2 \times (0.42 + 2 \times 0.511) \text{ MeV}$ $e^+ \text{ mass}$

+ 2 × 5.49 MeV

+ 12.86 MeV

= 26.7 MeV total

 $= 4.28 \times 10^{-12} \text{ J}$

By Sarang - Own work, Public Domain, https://commons.wikimedia.org/w/index.php?curid=51118538

Energy =
$$E = mc^2$$

mass $c = speed of light$

Energy =
$$E = mc^2$$

mass $c = speed of light$

Example: Mass converted to energy in p-p fusion

$$m = \frac{E}{c^2} = \frac{4.28 \times 10^{-12}}{(3 \times 10^8)^2} = 4.76 \times 10^{-29} \text{ kg}$$

Energy =
$$E = mc^2$$
 $c = speed of light$

Example: Mass converted to energy in p-p fusion

$$m = \frac{E}{c^2} = \frac{4.28 \times 10^{-12}}{(3 \times 10^8)^2} = 4.76 \times 10^{-29} \text{ kg} = 2.8 \% \text{ of the mass of proton}$$

Mass of a proton: $m_p = 1.6726 \times 10^{-27} \text{ kg}$

Energy =
$$E = mc^2$$

mass $c = speed of light$

Example: Mass converted to energy in p-p fusion

$$m = \frac{E}{c^2} = \frac{4.28 \times 10^{-12}}{(3 \times 10^8)^2} = 4.76 \times 10^{-29} \text{ kg} = 2.8 \% \text{ of the mass of proton}$$

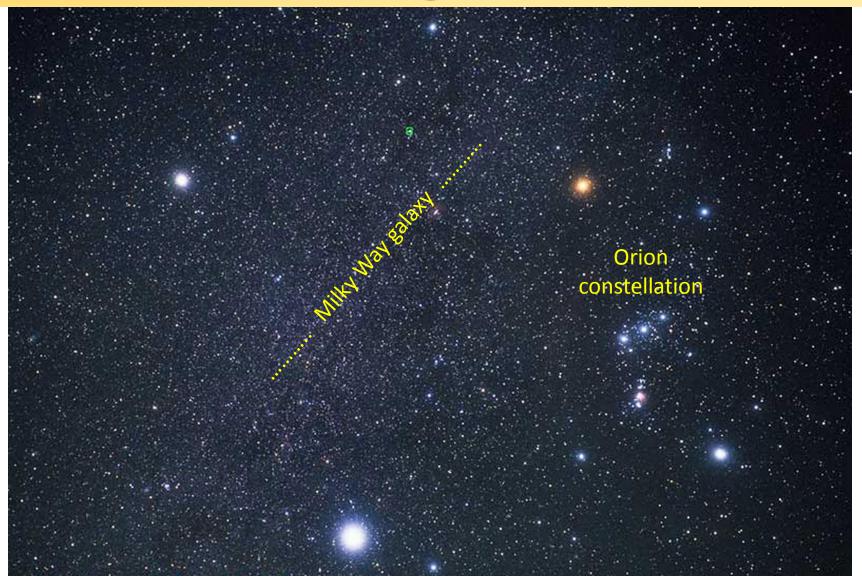
= 0.7 % of the mass of 4 protons

Mass of a proton: $m_p = 1.6726 \times 10^{-27} \text{ kg}$

Mass of 4 protons: $4 \times m_p = 6.6905 \times 10^{-27} \text{ kg}$

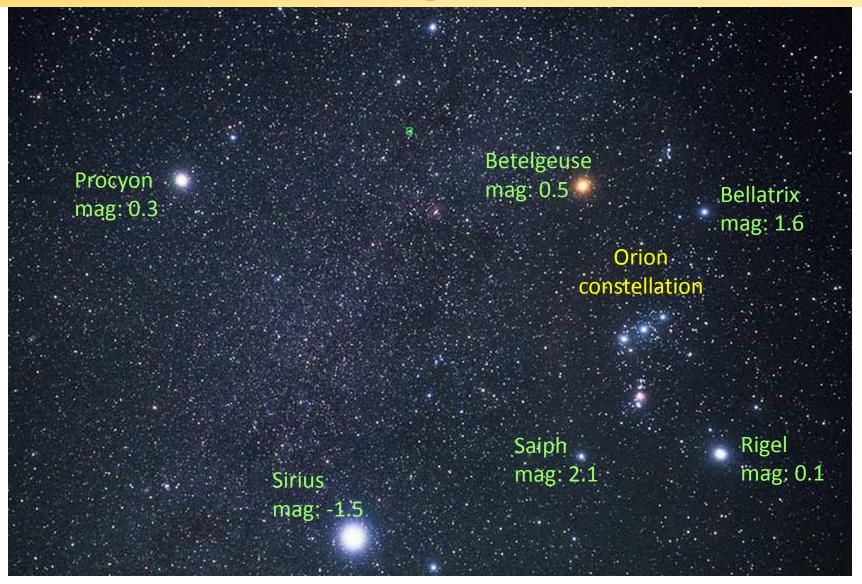
Energy =
$$E = mc^2$$
 $c = speed of light$

Example: Mass converted to energy in p-p fusion

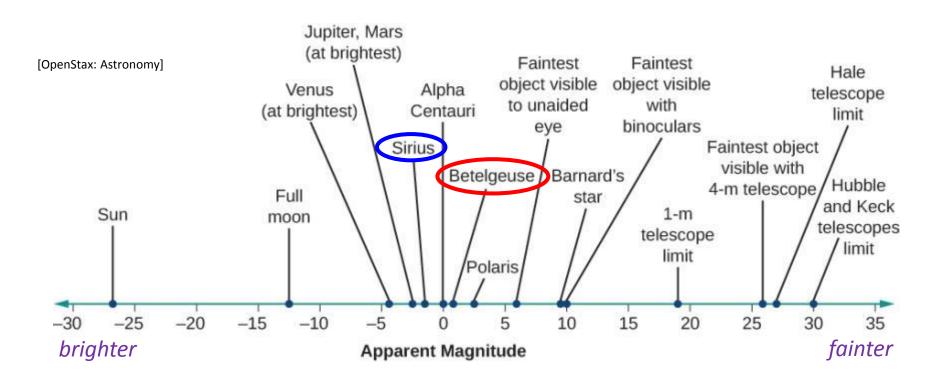

$$m = \frac{E}{c^2} = \frac{4.28 \times 10^{-12}}{(3 \times 10^8)^2} = 4.76 \times 10^{-29} \text{ kg} = 2.8 \% \text{ of the mass of proton}$$

= 0.7 % of the mass of 4 protons

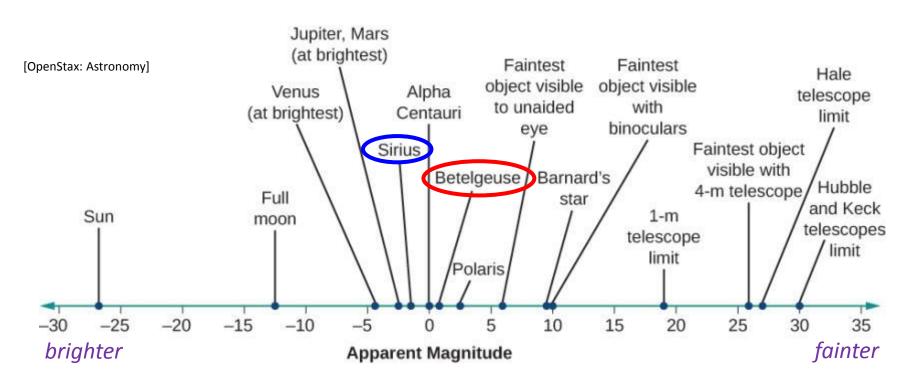
Mass of a proton:
$$m_p=1.6726\times 10^{-27}$$
 kg
Mass of 4 protons: $4\times m_p=6.6905\times 10^{-27}$ kg
Mass of ⁴He nucleus: $m_{He}=6.6447\times 10^{-27}$ kg


Note:
$$4m_p - m_{He} = 4.65 \times 10^{-29} \text{ kg}$$
 difference is due to two positrons!

By Hubble European Space AgencyCredit: Akira Fujii - http://www.spacetelescope.org/images/heic0206j/ (watermark was cropped), Public Domain, https://commons.wikimedia.org/w/index.php?curid=5246351

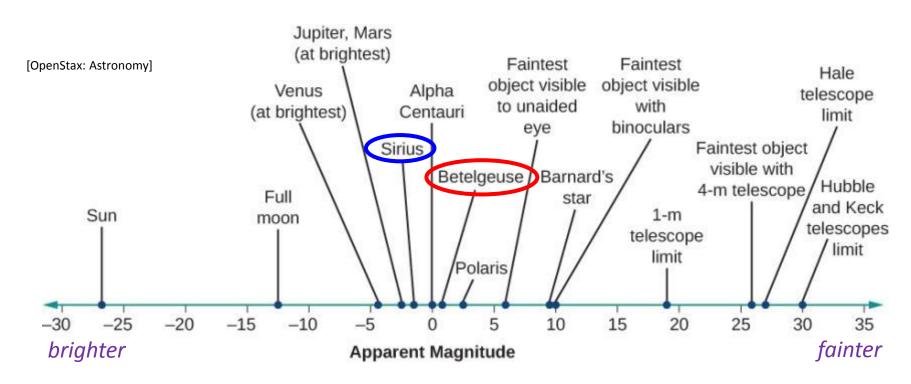


By Hubble European Space AgencyCredit: Akira Fujii - http://www.spacetelescope.org/images/heic0206j/ (watermark was cropped), Public Domain, https://commons.wikimedia.org/w/index.php?curid=5246351



By Hubble European Space AgencyCredit: Akira Fujii - http://www.spacetelescope.org/images/heic0206j/ (watermark was cropped), Public Domain, https://commons.wikimedia.org/w/index.php?curid=5246351

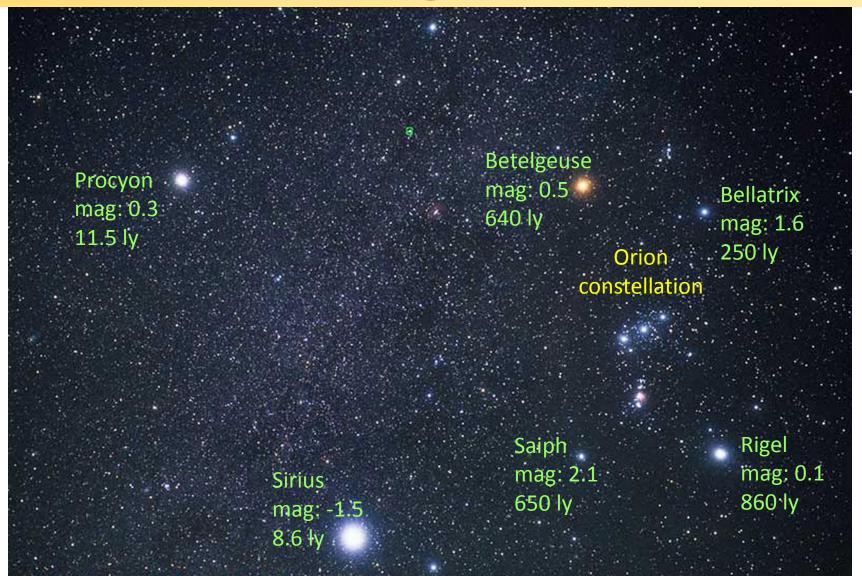
Apparent Magnitude Logarithmic brightness scale


Apparent Magnitude Logarithmic brightness scale

Apparent brightness is proportional to optical energy/power incident on detector/eye.

Human eyes are logarithmic detectors of brightness, so they measure magnitude.

Apparent MagnitudeLogarithmic brightness scale



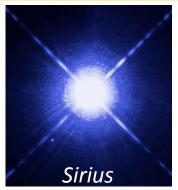
Apparent **brightness** is proportional to optical energy/power incident on detector/eye.

Human eyes are logarithmic detectors of brightness, so they measure magnitude.

 Δ magnitude = m_1 - m_2 = 1 corresponds to a factor of 2.512 change in brightness

$$\Delta brightness = \frac{b_2}{b_1} = 2.512^{\Delta m} = 2.512^{(m_1 - m_2)}$$

By Hubble European Space AgencyCredit: Akira Fujii - http://www.spacetelescope.org/images/heic0206j/ (watermark was cropped), Public Domain, https://commons.wikimedia.org/w/index.php?curid=5246351

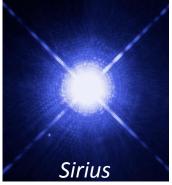

Apparent Brightness vs Luminosity

Luminosity (definition)

Total power output of a star.

energy per second

Distance of Star: The farther away a star is, the dimmer it will appear.


[By NASA, ESA, H. Bond (STScI), and M. Barstow (University of Leicester)]

Apparent Brightness vs Luminosity

Luminosity (definition)

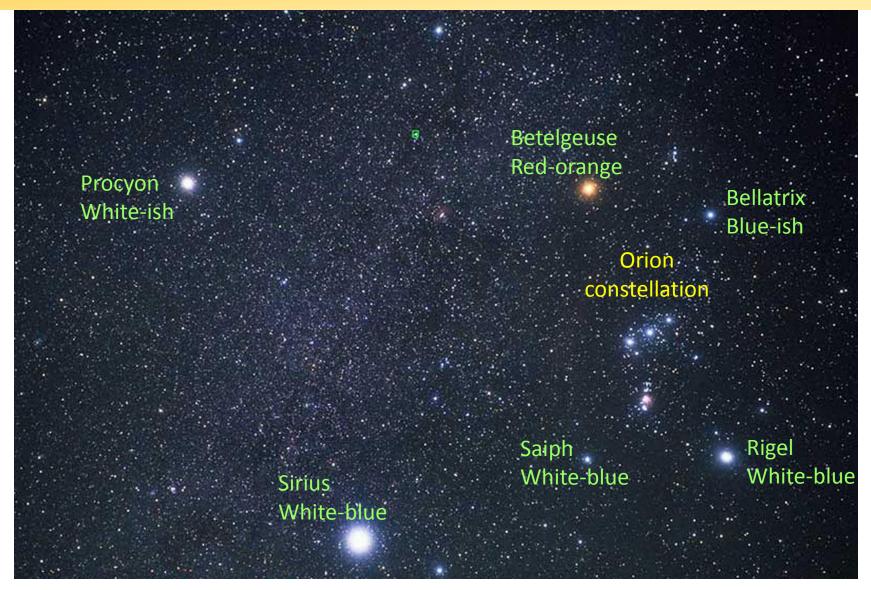
Total **power** output of a star.

energy per second

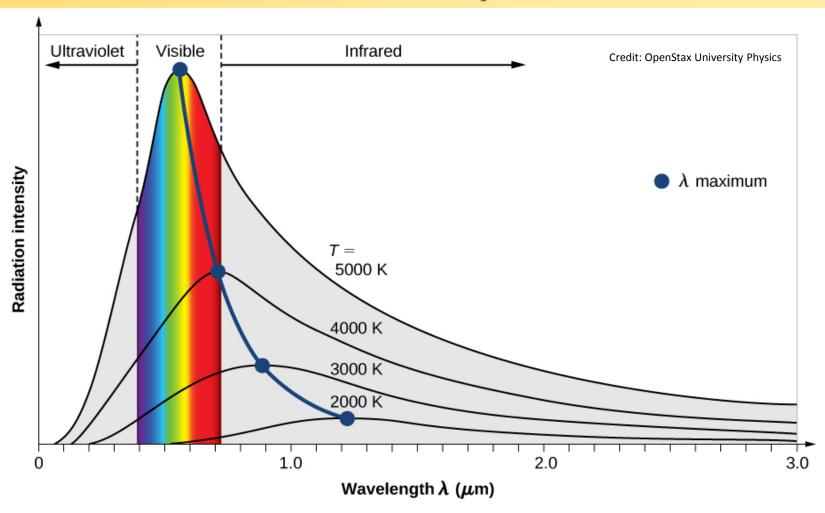
[By NASA, ESA, H. Bond (STScI), and M. Barstow (University of Leicester)]

Distance of Star: The farther away a star is, the dimmer it will appear.

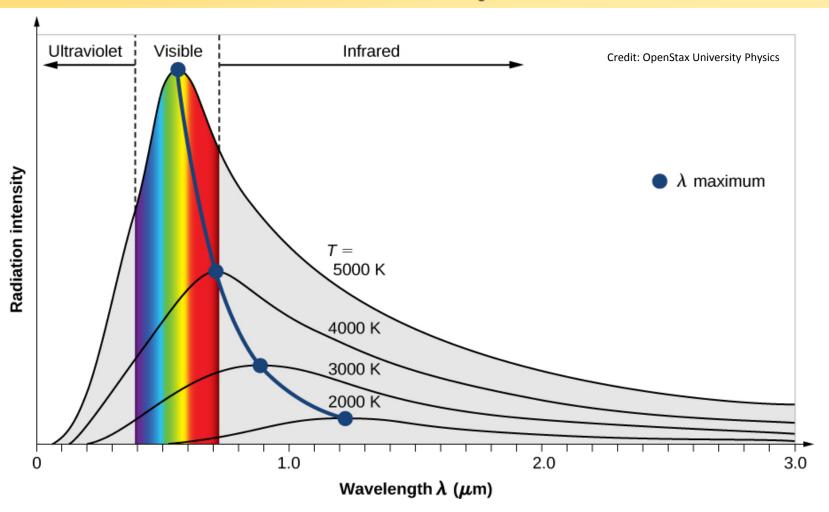
apparent brightness
$$\propto \frac{Luminosity}{distance^2}$$


Dim Stars

A star may appear dim because it has low luminosity, or/and because it is further away.


Bright Stars

A star may appear **bright** because it has **high luminosity**, or/and because it is **closer** to us.


Star Color

By Hubble European Space AgencyCredit: Akira Fujii - http://www.spacetelescope.org/images/heic0206j/ (watermark was cropped), Public Domain, https://commons.wikimedia.org/w/index.php?curid=5246351

Question: Why aren't there green stars?

Question: Why aren't there green stars?

Answer: The "greenest" you can get is when the peak emission is green (T~5000-6000 K), but since you have comparable amounts of blue and red light, the star looks white-ish.

Star Color	Approximate Temperature	Example
Blue	25,000 K	Spica
White	10,000 K	Vega
Yellow	6000 K	Sun
Orange	4000 K	Aldebaran

[OpenStax: Astronomy]

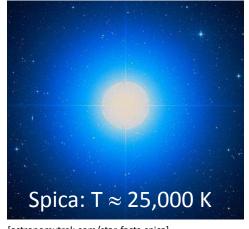
Star Color	Approximate Temperature	Example
Blue	25,000 K	Spica
White	10,000 K	Vega
Yellow	6000 K	Sun
Orange	4000 K	Aldebaran

Star light is blackbody radiation

Star color follows roughly from Wien's law for peak wavelength: $\lambda_{max,\,nm}$

$$\lambda_{max, nm} = \frac{2.9 \times 10^6}{T}$$

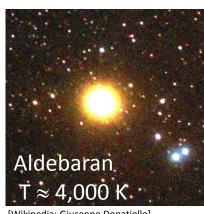
[OpenStax: Astronomy]


Star Color	Approximate Temperature	Example
Blue	25,000 K	Spica
White	10,000 K	Vega
Yellow	6000 K	Sun
Orange	4000 K	Aldebaran

[OpenStax: Astronomy]

Star light is blackbody radiation

Star color follows roughly from Wien's law for peak wavelength: $\lambda_{max,\,nm}$


$$\lambda_{max, nm} = \frac{2.9 \times 10^6}{T}$$

[Wikipedia: Skatebiker]

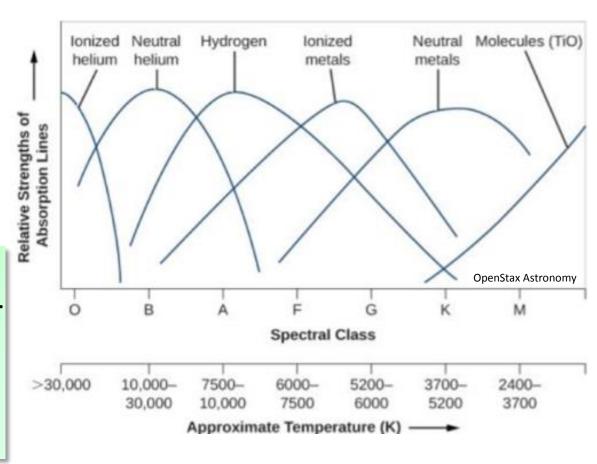
[Wikipedia: Giuseppe Donatiello]

Star Spectral Classes

Historical error: Spectroscopic studies of stars in the late 1800's led astronomers to believe that stars were constituted of vastly different elements.

→ Stars were classified by their spectral type: O, B, A, F, G, K, M.

Star Spectral Classes


Historical error: Spectroscopic studies of stars in the late 1800's led astronomers to believe that stars were constituted of vastly different elements.

→ Stars were classified by their spectral type: O, B, A, F, G, K, M.

Cecilia Payne-Gaposchkin (1900-1979)

- Spectral differences are due to the temperatures of the stars.
- Discovered by Cecilia Payne-Gaposchkin (1925, PhD Harvard).

Luminosity = Output Power

Stellar luminosity is given by

 $Luminosity = Output Power = Intensity \times Surface Area$

Luminosity = Output Power

Stellar luminosity is given by

 $Luminosity = Output Power = Intensity \times Surface Area$

Light intensity for a blackbody is given by the

Stefan-Boltzmann law:

$$Intensity = \sigma T^4$$

A hot star is more luminous

Luminosity = Output Power

Stellar luminosity is given by

 $Luminosity = Output Power = Intensity \times Surface Area$

Light intensity for a blackbody is given by the

Stefan-Boltzmann law:

$$Intensity = \sigma T^4$$

A hot star is more luminous

> The surface area of a star is related to its radius, i.e. size:

$$Surface\ Area = 4\pi R^2$$

A large star is more luminous