Interlude 2 Papers Space Art

If you make your own space art:

- Paper length is 4 pages (instead of 5).
- Art should incorporate some knowledge from the course.
- Quality of art will be graded Pass/Fail.

Papers are due in class on Friday, November 13 (last day of classes).

Today's Topics

Friday, October 30, 2020 (Week 10, lecture 29) – Chapters 22, 23.

Sun-like stars: old age to death

- A. Main sequence to red giant.
- B. Planetary Nebulae.
- C. White Dwarfs.

Stellar Evolution: on the H-R Diagram

Evolution of Sun-like Stars

Stage	Time in This Stage (years)	Surface Temperature (K)	Luminosity (L _{Sun})	Diameter (Sun = 1)
Main sequence	11 billion	6000	1	1
Becomes red giant	1.3 billion	3100 at minimum	2300 at maximum	165
Helium fusion	100 million	4800	50	10
Giant again	20 million	3100	5200	180
white dwarf (+ planetary neb	forever oula)	40,000 к → 4,000 к	~ 1 > 0.01	~ 0.01

Becoming a Red Giant

1. Main sequence operation

Proton-proton fusion chain in core 4x Hydrogen \rightarrow 1 helium

Becoming a Red Giant

1. Main sequence operation

Proton-proton fusion chain in core 4x Hydrogen \rightarrow 1 helium

2. Core hydrogen exhausted

- Helium core begins to **contract**.
- Helium core **heats up**.
- Hydrogen just outside of helium core **begins fusion**.

Becoming a Red Giant

1. Main sequence operation

Proton-proton fusion chain in core 4x Hydrogen \rightarrow 1 helium

Stellar envelope Hydrogen burning core

2. Core hydrogen exhausted

- Helium core begins to **contract**.
- Helium core **heats up**.
- Hydrogen just outside of helium core **begins fusion**.

3. Expansion to red giant

- **Heat** from new hydrogen shell fusion is **significant** and heats up outer hydrogen in stellar envelope.

- Stellar envelope heats up and **expands** (outer layer then cools).

- Helium core continues to contract and heat up.

Hydrogen fusion shell Heats stellar envelope

Helium core contracts & heats up

Stellar envelope expands

Helium Fusion

- At T \approx 100,000,000 K, helium nuclei begin to fuse.
- Fusion of two helium nuclei does not produce a stable isotope:
 ⁴He + ⁴He → ⁸Be (lifetime ~ 10⁻¹⁶ 10⁻¹⁷ s)

Triple alpha process (at 10⁸ K)

Three helium nuclei can fuse simultaneously to produce carbon-12 (stable):

 $^{4}\text{He} + {}^{4}\text{He} + {}^{4}\text{He} \rightarrow {}^{12}\text{C} + 7.65 \text{ MeV}$

... also ⁴He + ¹²C \rightarrow ¹⁶O

Helium Fusion

- At T \approx 100,000,000 K, helium nuclei begin to fuse.
- Fusion of two helium nuclei does not produce a stable isotope:
 ⁴He + ⁴He → ⁸Be (lifetime ~ 10⁻¹⁶ 10⁻¹⁷ s)

Triple alpha process (at 10⁸ K)

Three helium nuclei can fuse simultaneously to produce carbon-12 (stable):

 $^{4}\text{He} + {}^{4}\text{He} + {}^{4}\text{He} \rightarrow {}^{12}\text{C} + 7.65 \text{ MeV}$

... also ⁴He + ¹²C \rightarrow ¹⁶O

Helium Flash (for Sun-like stars)

The fusion of helium into carbon happens very quickly (possibly in a few minutes).

Structure of Red Giant Star before "Death"

Red Giant Evolution from Sun-like Star

Planetary Nebula

- Over the course of its red giant phase, a Sun-like star is expected to shed roughly 50% of its mass. Gas speed ~ 20-30 km/s.
- This ejected mass becomes a planetary nebula with a white dwarf at its center.

(note: planetary nebula has nothing to do with planets)

- Over the course of its red giant phase, a Sun-like star is expected to shed roughly 50% of its mass. Gas speed ~ 20-30 km/s.
- This ejected mass becomes a planetary nebula with a white dwarf at its center.

(note: planetary nebula has nothing to do with planets)

- Over the course of its red giant phase, a Sun-like star is expected to shed roughly 50% of its mass. Gas speed ~ 20-30 km/s.
- This ejected mass becomes a planetary nebula with a white dwarf at its center.

(note: planetary nebula has nothing to do with planets)

star transitioning from Red giant to white dwarf

[IC 4406 Retina nebula: NASA/Hubble]

[M2-9 Twin Jet / Butterfly Wings Nebula: ESA/Hubble]

white dwarf or soon-to-be white dwarf (no binary companion) 0.6 M_{sun}, 200,000 K [Szyszka et al, Astrophys. J. 707, L32 (2009)]

[NGC 6302 Butterfly Nebula: NASA/ESA/Hubble SM4 ERO Team]

white dwarf or soon-to-be white dwarf (no binary companion) 0.6 M_{sun}, 200,000 K [Szyszka et al, Astrophys. J. 707, L32 (2009)]

[NGC 6302 Butterfly Nebula: NASA/ESA/Hubble SM4 ERO Team]

White dwarf

- "Ember" of dead star.
- Does not produce any energy of its own.
 → No fusion
- Starts out "white hot" and cools down to a black dwarf.
- Cools by emitting blackbody radiation.
- Heavier white dwarfs are smaller !!!

2.4×10⁶ g/cm³

[NASA, ESA, H. Bond (STScI), and M. Barstow (University of Leicester)]

White dwarf

- "Ember" of dead star.
- Does not produce any energy of its own.
 → No fusion
- Starts out "white hot" and cools down to a black dwarf.
- Cools by emitting blackbody radiation.
- Heavier white dwarfs are smaller !!!

Sirius A T = 9900 K $M = 2.1 M_{Sun}$ $R = 1.7 R_{Sup}$ $0.6 \, g/cm^3$ Sirius B (white dwarf) T = 25.000 K $M = 1.0 M_{Sun}$ $R = 0.008 R_{Sun}$ 2.4×10⁶ g/cm³ [NASA, ESA, H. Bond (STScI), and M. Barstow (University of Leicester)]

S. Chandrasekhar

(1910-1995), Nobel 1983.

- A white dwarf is dense enough that gravity & pressure are strong enough to overwhelm the electric repulsion between nuclei and electrons, but ...
- Gravity is counteracted by quantum "Pauli pressure."
- the <u>Pauli exclusion principle</u> for electrons: you cannot have more than one electron per quantum state (location or velocity).
 - \rightarrow Same principle prevents electrons from piling up in the ground state orbital of atoms.

Pauli Exclusion Principle

- the <u>Pauli exclusion principle</u> for electrons: you cannot have more than one electron per quantum state (location or velocity).
 - \rightarrow Same principle prevents electrons from piling up in the ground state orbital of atoms.

- A white dwarf is dense enough that gravity & pressure are strong enough to overwhelm the electric repulsion between nuclei and electrons, but ...
- Gravity is counteracted by quantum "Pauli pressure."
- the <u>Pauli exclusion principle</u> for electrons: you cannot have more than one electron per quantum state (location or velocity).
 - \rightarrow Same principle prevents electrons from piling up in the ground state orbital of atoms.

- A white dwarf is dense enough that gravity & pressure are strong enough to overwhelm the electric repulsion between nuclei-electrons, but ...
- Gravity is counteracted by quantum "Pauli pressure."
- the <u>Pauli exclusion principle</u> for electrons: you cannot have more than one electron per quantum state (location or velocity).
 - \rightarrow Same principle prevents electrons from piling up in the ground state orbital of atoms.
- Electron Pauli pressure prevents the star from collapsing.
- ➢ Above <u>Chandrasekhar limit</u> (1.4M_{sun}), gravity overcomes Pauli pressure → neutron star.

- A white dwarf is dense enough that gravity & pressure are strong enough to overwhelm the electric repulsion between nuclei and electrons, but ...
- Gravity is counteracted by quantum "Pauli pressure."
- the <u>Pauli exclusion principle</u> for electrons: you cannot have more than one electron per quantum state (location or velocity).
 - \rightarrow Same principle prevents electrons from piling up in the ground state orbital of atoms.
- Electron Pauli pressure prevents the star from collapsing.
- ➢ Above <u>Chandrasekhar limit</u> (1.4M_{sun}), gravity overcomes Pauli pressure → neutron star.

White dwarf crystallization

Below ~ 4,000 K, the electric force between nuclei is strong enough to make an ordered arrangement of nuclei, i.e. "nuclear crystal."

- \rightarrow The core of the white dwarf crystallizes.
- → Some <u>asteroseimology</u> evidence.

