Today's Topics

Wednesday, November 3, 2020 (Week 11, lecture 31) – Chapter 23.

A. Supernova remnants.

B. Neutron stars.

C. Pulsars.

Cassiopeia A: Supernova Remnant

Supernova in the late 1600's

Cassiopeia A supernova remnant (type II)

False color composite image from Hubble (optical = gold), Spitzer (IR = red), and Chandra (X-ray = green & blue) [source: Wikipedia, Oliver Krause (Steward Observatory) and co-workers]

Cassiopeia A: Supernova Remnant

Cassiopeia A supernova remnant (type II)

False color composite image from Hubble (optical = gold), Spitzer (IR = red), and Chandra (X-ray = green & blue) [source: Wikipedia, Oliver Krause (Steward Observatory) and co-workers]

Cassiopeia A: Supernova Remnant

~10 light years

Cassiopeia A supernova remnant (type II)

False color composite image from Hubble (optical = gold), Spitzer (IR = red), and Chandra (X-ray = green & blue) [source: Wikipedia, Oliver Krause (Steward Observatory) and co-workers]

Crab Nebula: Supernova Remnant

Supernova in 1054 AD (type II) constellation: Taurus

Crab Nebula: Supernova Remnant

Supernova in 1054 AD (type II) constellation: Taurus

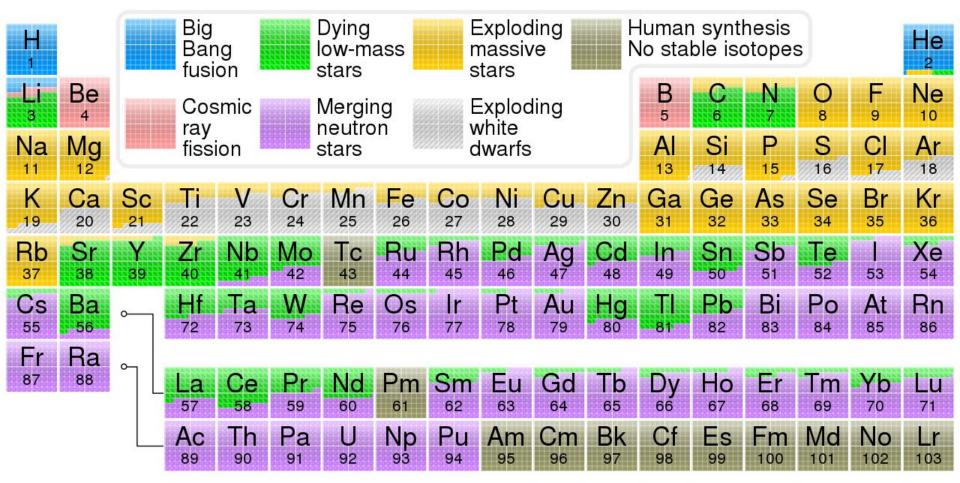
~11 light years

Tycho's Supernova Remnant

SN 1572 (type I = white dwarf + red giant binary explosion) Constellation: Cassiopeia

Composite image: blue = hard x-rays, red = soft x-rays, background stars = optical [NASA/Chandra (2009)]

Tycho's Supernova Remnant


SN 1572 (type I = white dwarf + red giant binary explosion) Constellation: Cassiopeia

~10 light years

Composite image: blue = hard x-rays, red = soft x-rays, background stars = optical [NASA/Chandra (2009)]

Where do heavy elements come from ?

- Supernovae are a major source of heavy elements
- Most of the iron core of a massive star is "dissolves" into protons in the core collapse.
 → the supernova explosion produces its own iron (and other heavier elements)

This table give the estimated origin of elements in the Solar System.

[Source: Wikipedia, Cmglee (2017)]

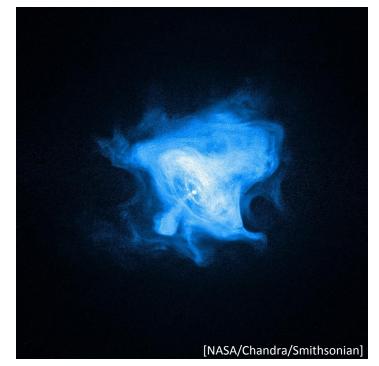
Type II Supernova: What's Left ?

Initial Star Mass	Outcome
10-40 M _{Sun}	Supernova $ ightarrow$ Neutron Star
40-90 M _{Sun}	Supernova $ ightarrow$ Black Hole
>90 M _{Sun}	Direct collapse to Black Hole

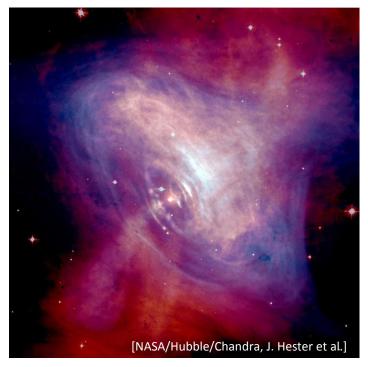
Note: the exact outcome depends on the initial composition (metallicity) star.

Crab Nebula: Neutron Star

Supernova in 1054 AD constellation: Taurus


Crab Nebula: Neutron Star

Supernova in 1054 AD constellation: Taurus



[NASA/ESA/Hubble, 1999-2000]

Crab Nebula: Neutron Star

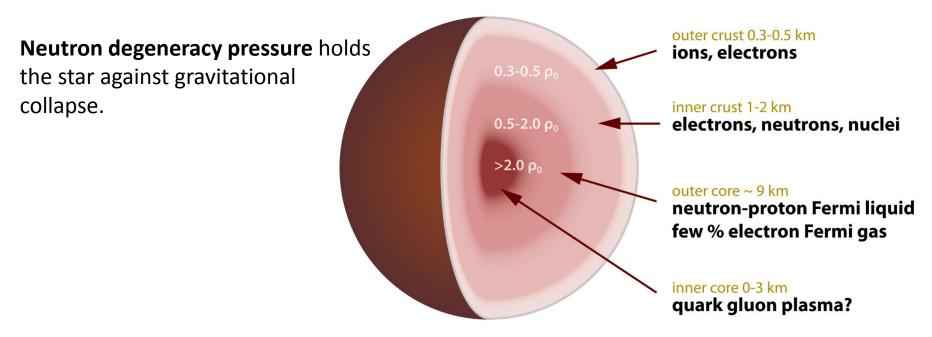
X-ray image of Crab Nebula neutron star, 2008

X-ray + optical images of Crab Nebula neutron star

[Table 23.3, OpenStax: Astronomy]

Property	White Dwarf	Neutron Star
Mass (Sun = 1)	0.6 (always <1.4)	Always >1.4 and <3
Radius	7000 km (Earth size)	10 km (city size)
Density	8 × 10 ⁵ g/cm ³	10 ¹⁴ g/cm ³

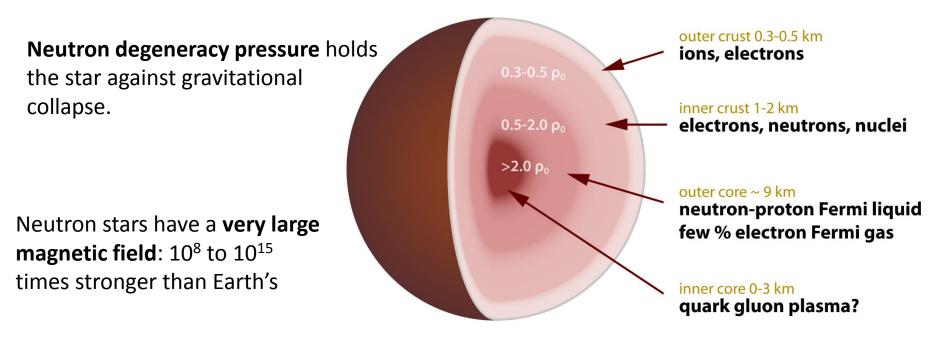
[Table 23.3, OpenStax: Astronomy]

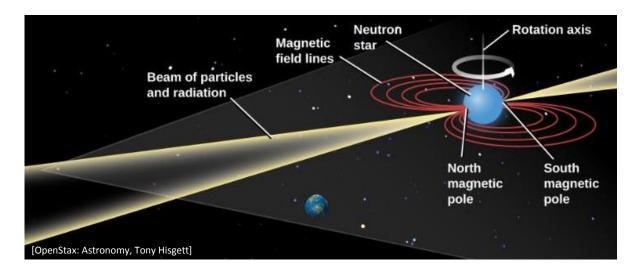

Property	White Dwarf	Neutron Star
Mass (Sun = 1)	0.6 (always <1.4)	Always >1.4 and <3
Radius	7000 km (Earth size)	10 km (city size)
Density	8 × 10 ⁵ g/cm ³	10 ¹⁴ g/cm ³

Neutron degeneracy pressure holds

the star against gravitational collapse.

[Table 23.3, OpenStax: Astronomy]

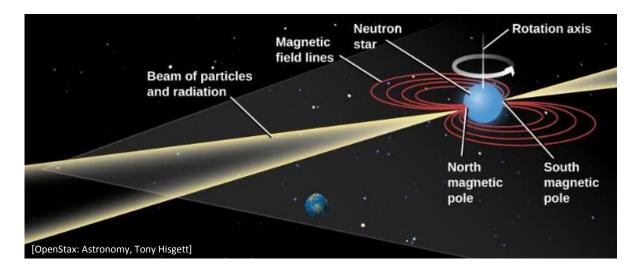

Property	White Dwarf	Neutron Star
Mass (Sun = 1)	0.6 (always <1.4)	Always >1.4 and <3
Radius	7000 km (Earth size)	10 km (city size)
Density	8 × 10 ⁵ g/cm ³	10 ¹⁴ g/cm ³


[Wikipedia: Robert Schulze]

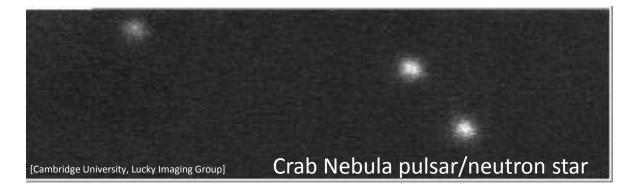
[Table 23.3, OpenStax: Astronomy]

Property	White Dwarf	Neutron Star
Mass (Sun = 1)	0.6 (always <1.4)	Always >1.4 and <3
Radius	7000 km (Earth size)	10 km (city size)
Density	8 × 10 ⁵ g/cm ³	10 ¹⁴ g/cm ³

Pulsars: Rotating Neutron Stars

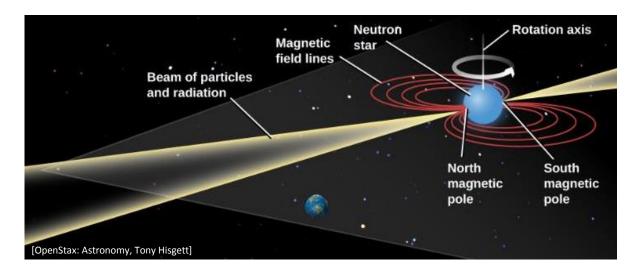


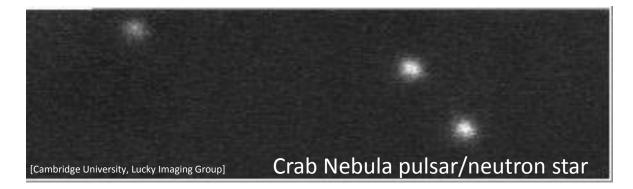
- Beams of radiation from the magnetic poles of a neutron star can give rise to pulses of emission as the star rotates.
- As each beam sweeps over Earth, we see a short pulse of radiation (like a lighthouse).



Jocelyn Bell Burnell co-discoverer of pulsars (1967)

Pulsars: Rotating Neutron Stars


- Beams of radiation from the magnetic poles of a neutron star can give rise to pulses of emission as the star rotates.
- As each beam sweeps over Earth, we see a short pulse of radiation (like a lighthouse).



Jocelyn Bell Burnell co-discoverer of pulsars (1967)

Pulsars: Rotating Neutron Stars

- Beams of radiation from the magnetic poles of a neutron star can give rise to pulses of emission as the star rotates.
- As each beam sweeps over Earth, we see a short pulse of radiation (like a lighthouse).

Jocelyn Bell Burnell co-discoverer of pulsars (1967)

Typical rotation period:

- Very stable.
- ms to seconds.
- Can change abruptly during a "starquake."