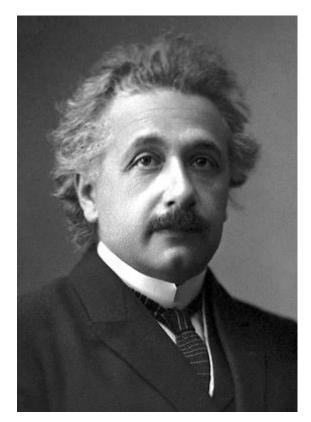
Today's Topics


Friday, November 6, 2020 (Week 11, lecture 32) – Chapter 24.

- A. Einstein's Theory of Relativity.
- B. Special Relativity.
- C. Length contraction.
- D. Time dilation.
- E. General Relativity.

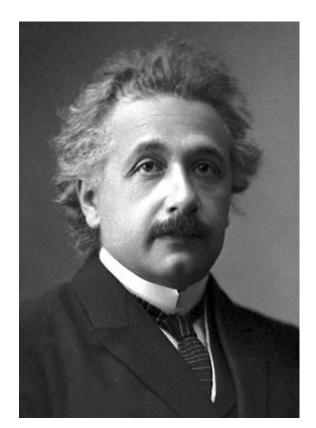
Einstein's Theory of Relativity

1905: Annus Mirabilis

- Brownian motion (motion of atoms in a gas).
- Photo-electric effect (discovery of the photon, E = hf)
- Special theory of relativity.
 - → Major revision of Galilean relativity.
 - \rightarrow Equivalence of energy and matter: $E = mc^2$

Albert Einstein, 1921. (1879-1955)

Einstein's Theory of Relativity


1905: Annus Mirabilis

- Brownian motion (motion of atoms in a gas).
- Photo-electric effect (discovery of the photon, E = hf)
- Special theory of relativity.
 - → Major revision of Galilean relativity.
 - \rightarrow Equivalence of energy and matter: $E = mc^2$

1907-15: General Relativity

Theory of relativity applied to gravity.

 \rightarrow gravity = curved space-time.

Albert Einstein, 1921. *(1879-1955)*

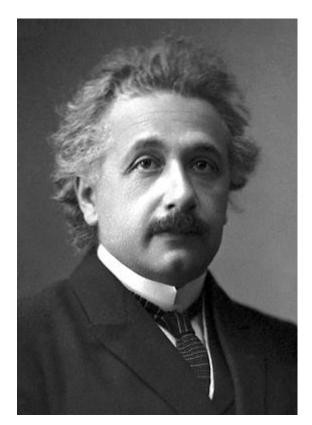
Einstein's Theory of Relativity

1905: Annus Mirabilis

- Brownian motion (motion of atoms in a gas).
- Photo-electric effect (discovery of the photon, E = hf)
- Special theory of relativity.
 - → Major revision of Galilean relativity.
 - \rightarrow Equivalence of energy and matter: $E = mc^2$

1907-15: General Relativity

Theory of relativity applied to gravity.


 \rightarrow gravity = curved space-time.

1921: Nobel Prize for photo-electric effect.

1924: Bose-Einstein Condensation

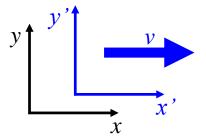
Predicts the existence of a new type of quantum matter.

- → Builds on the work of Satyendra Bose.
- → First observed in 1995
- → There is a BEC in the basement of Small Hall (room # 069).

Albert Einstein, 1921. *(1879-1955)*

Inertial Frames (Galileo & Einstein)

Inertial Frame


Coordinate system at constant velocity in a rest frame.

think of it as a box

Rest Frame

A coordinate system that is not moving.

Note: a rest frame is an inertial frame.



Inertial Frames (Galileo & Einstein)

Inertial Frame

Coordinate system at constant velocity in a rest frame.

think of it as a box

Rest Frame

A coordinate system that is not moving.

Note: a rest frame is an inertial frame.

Important

- You cannot tell if you are moving based on local measurements inside your inertial reference frame (the frame attached to you).
- If you are **accelerating/decelerating**, then you can tell based on local measurements (i.e. there is a force on you that you can measure, F = ma).

Special Relativity (Einstein)

Principle of Relativity

The laws of physics are the same in all inertial reference frames.

Corollary #1

You cannot tell if you are moving (based on local measurements) in an inertial frame.

Corollary #2: Universal speed of light

The speed of light in vacuum is the same in all inertial frames, regardless of the motion of the source.

Special Relativity (Einstein)

Principle of Relativity

The laws of physics are the same in all inertial reference frames.

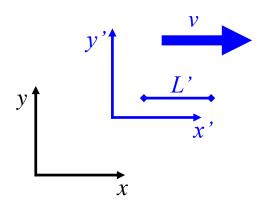
Corollary #1

You cannot tell if you are moving (based on local measurements) in an inertial frame.

Corollary #2: Universal speed of light

The speed of light in vacuum is the same in all inertial frames, regardless of the motion of the source.

Length contraction & time dilation

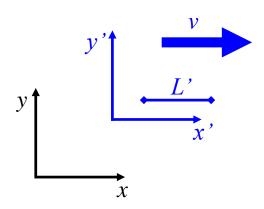

Special Relativity

Length Contraction

In the x'-y' inertial frame

Consider a rod of length $L' = L_0$, as measured in the x'-y' inertial frame (i.e. the rest frame of the rod).

Note: The rod is aligned with the axis of motion along x'.


Special Relativity

Length Contraction

In the x'-y' inertial frame

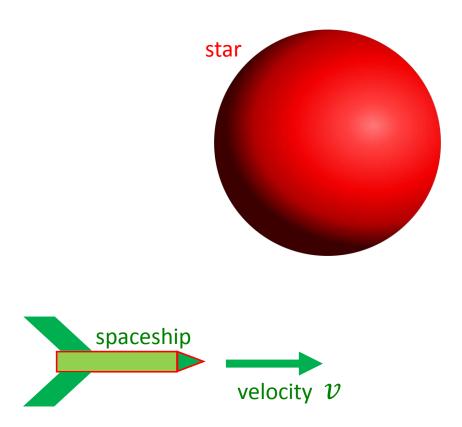
Consider a rod of length $L' = L_0$, as measured in the x'-y' inertial frame (i.e. the rest frame of the rod).

Note: The rod is aligned with the axis of motion along x'.

In the x-y inertial frame

If you measure the length of the rod, then you will

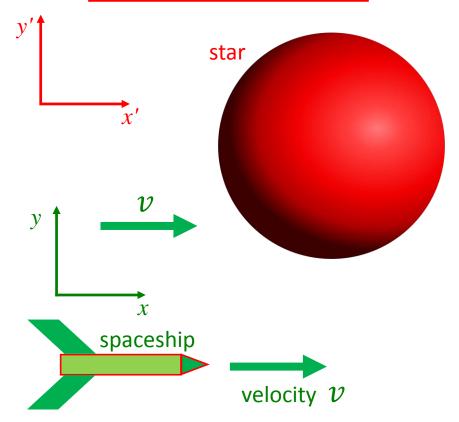
get a shorter length: L


$$L = \frac{L_0}{\gamma}.$$

Gamma factor:
$$\gamma = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}}$$

Note: the length contraction is only along the axis of motion. Along axes perpendicular to the motion, there is no change in length.

$$\gamma \geq 1$$


Consider a spaceship travelling past a spherical star at 90% of the speed of light.

Question: What is the shape of the star in the frame of the spaceship?

Consider a spaceship travelling past a spherical star at 90% of the speed of light.

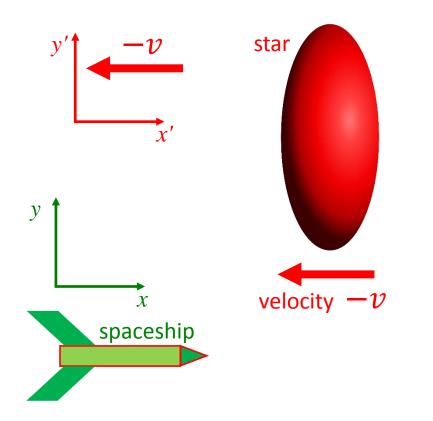
Rest frame of the star

Question: What is the shape of the star in the frame of the spaceship?

Consider a spaceship travelling past a spherical star at 90% of the speed of light.

star y v

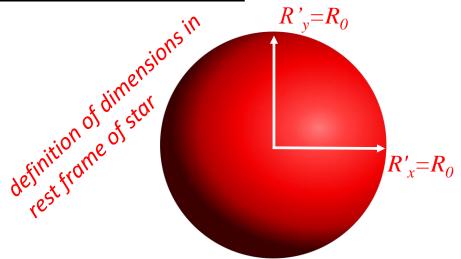
Rest frame of the star

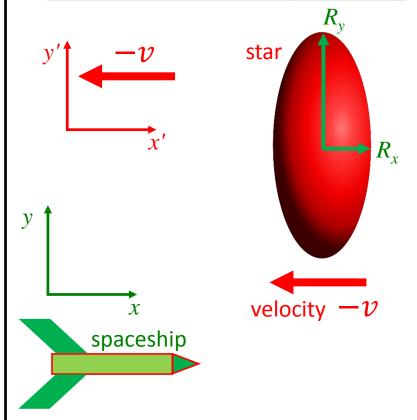

Question: What is the shape of the star in the frame of the spaceship?

velocity ${oldsymbol{\mathcal{V}}}$

 χ

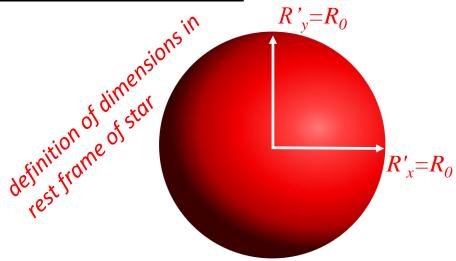
spaceship


Rest frame of the spaceship


Answer: The star appears/is compressed along the axis of travel.

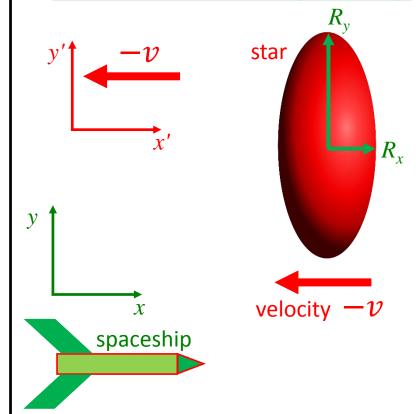
Consider a spaceship travelling past a spherical star at 90% of the speed of light.

Quantitative answer


Rest frame of the spaceship

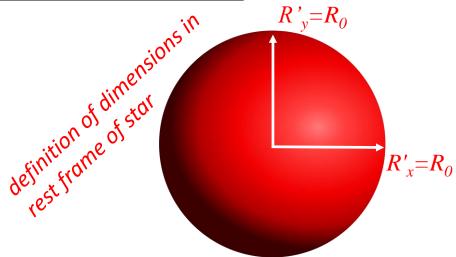
Answer: The star appears/is compressed along the axis of travel.

Consider a spaceship travelling past a spherical star at 90% of the speed of light.


Quantitative answer

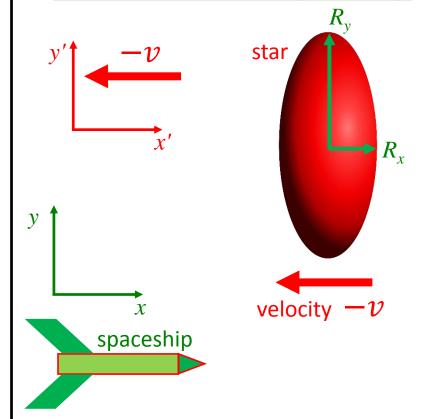
In the rest frame of the spaceship, we have

$$R_{x} = \frac{R_{0}}{\gamma} \text{ with } \gamma = \frac{1}{\sqrt{1 - \frac{v^{2}}{c^{2}}}}$$


Rest frame of the spaceship

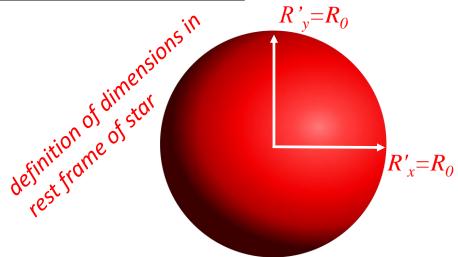
Answer: The star appears/is compressed along the axis of travel.

Consider a spaceship travelling past a spherical star at 90% of the speed of light.


Quantitative answer

In the rest frame of the spaceship, we have

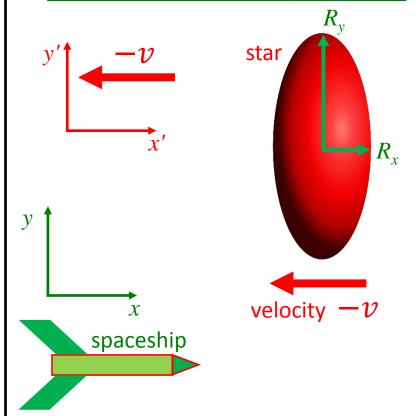
$$R_{x} = \frac{R_{0}}{\gamma} \text{ with } \gamma = \frac{1}{\sqrt{1 - \frac{v^{2}}{c^{2}}}} = \frac{1}{\sqrt{1 - \frac{(-0.9c)^{2}}{c^{2}}}}$$
$$= \frac{1}{\sqrt{1 - 0.81}} = 2.29$$


Rest frame of the spaceship

Answer: The star appears/is compressed along the axis of travel.

Consider a spaceship travelling past a spherical star at 90% of the speed of light.

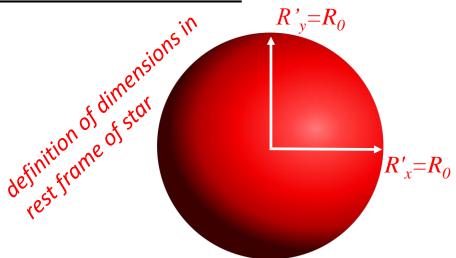
Quantitative answer



In the rest frame of the spaceship, we have

$$R_{x} = \frac{R_{0}}{\gamma}$$
 with $\gamma = \frac{1}{\sqrt{1 - \frac{v^{2}}{c^{2}}}} = \frac{1}{\sqrt{1 - \frac{(-0.9c)^{2}}{c^{2}}}}$
$$= \frac{1}{\sqrt{1 - 0.81}} = 2.29$$

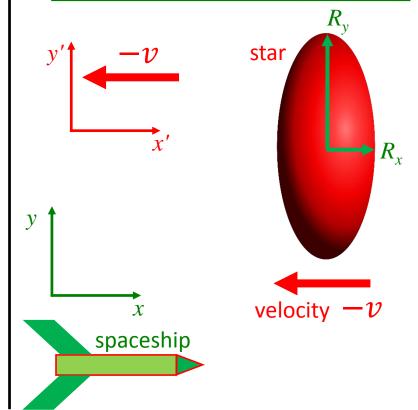
Thus
$$R_x = \frac{R_0}{2.29} = 0.43R_0$$


Rest frame of the spaceship

Answer: The star appears/is compressed along the axis of travel.

Consider a spaceship travelling past a spherical star at 90% of the speed of light.

Quantitative answer

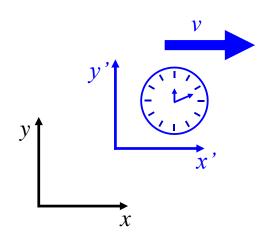


In the rest frame of the spaceship, we have

$$R_{x} = \frac{R_{0}}{\gamma}$$
 with $\gamma = \frac{1}{\sqrt{1 - \frac{v^{2}}{c^{2}}}} = \frac{1}{\sqrt{1 - \frac{(-0.9c)^{2}}{c^{2}}}}$

Thus $R_x = \frac{R_0}{2.29} = 0.43R_0$

Rest frame of the spaceship


Answer: The star appears/is compressed to 43% of its original size along the direction of travel. *The transverse directions are unaffected.*

Special Relativity

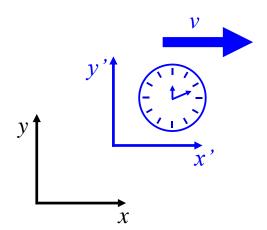
Time Dilation

In the x'-y' inertial frame

Consider a clock at rest in the x'-y' inertial frame that measures a time interval of $\Delta T' = T_0$, i.e. the time for the big clock hand to go from noon to the 2 o'clock position (10 minutes).

Special Relativity

Time Dilation


In the x'-y' inertial frame

Consider a clock at rest in the x'-y' inertial frame that measures a time interval of $\Delta T' = T_0$, i.e. the time for the big clock hand to go from noon to the 2 o'clock position (10 minutes).

In the x-y inertial frame

If you measure the same elapsed time (with your own timepiece) from the x-y inertial frame, i.e. as the clock flies past you, then you will measure a

longer elapsed time:
$$T=\gamma T_0$$
.

- Figure 7.2. Twin A travels to a distant star at a velocity of v=0.9c and then returns also at a velocity v=0.9c, while twin B remains on Earth.
- > Twin A measures a travel time of 10 years (according to twin A's clock) to get to the star, and then 10 years to return to Earth.

- Figure 7.2. Twin A travels to a distant star at a velocity of v=0.9c and then returns also at a velocity v=0.9c, while twin B remains on Earth.
- > Twin A measures a travel time of 10 years (according to twin A's clock) to get to the star, and then 10 years to return to Earth.

Question 1

How much older is twin A, when twin A returns to Earth?

- Figure 7.2. Twin A travels to a distant star at a velocity of v=0.9c and then returns also at a velocity v=0.9c, while twin B remains on Earth.
- > Twin A measures a travel time of 10 years (according to twin A's clock) to get to the star, and then 10 years to return to Earth.

Question 1

How much older is twin A, when twin A returns to Earth?

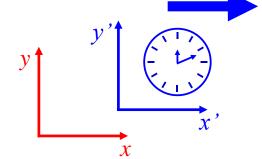
Answer 1

Since we are using twin A's clock, we know that

$$\Delta T' = T_0 = 2 \times 10 \ years = 20 \ years$$

Twin A has aged 20 years (in the physics-biology sense).

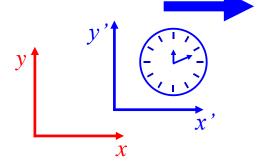
- > Twin A travels to a distant star at a velocity of v=0.9c and then returns also at a velocity v=0.9c, while twin B remains on Earth.
- > Twin A measures a travel time of 10 years (according to twin A's clock) to get to the star, and then 10 years to return to Earth.


Question 2

How much older is twin B, when twin A returns to Earth?

- > Twin A travels to a distant star at a velocity of v=0.9c and then returns also at a velocity v=0.9c, while twin B remains on Earth.
- > Twin A measures a travel time of 10 years (according to twin A's clock) to get to the star, and then 10 years to return to Earth.

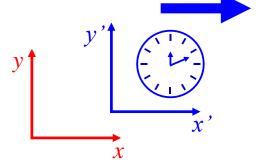
Question 2


How much older is **twin B**, when **twin A** returns to Earth?

- For Twin A travels to a distant star at a velocity of v=0.9c and then returns also at a velocity v=0.9c, while twin B remains on Earth.
- > Twin A measures a travel time of 10 years (according to twin A's clock) to get to the star, and then 10 years to return to Earth. v = 0.9c

Question 2

How much older is **twin B**, when **twin A** returns to Earth?


Answer 2

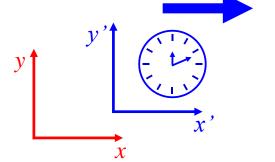
If twin B is in the x-y frame (Earth), and twin A is in the x'-y' frame (spaceship), then

- For Twin A travels to a distant star at a velocity of v=0.9c and then returns also at a velocity v=0.9c, while twin B remains on Earth.
- > Twin A measures a travel time of 10 years (according to twin A's clock) to get to the star, and then 10 years to return to Earth. v = 0.9c

Question 2

How much older is **twin B**, when **twin A** returns to Earth?

Answer 2


If twin B is in the x-y frame (Earth), and twin A is in the x'-y' frame (spaceship), then

$$\Delta T = \gamma \Delta T' = \gamma T_0 = 2.29 \times 20 \ years = 45.8 \ years$$
 with
$$\gamma = \frac{1}{\sqrt{1-\frac{v^2}{c^2}}} = 2.29$$

- For Twin A travels to a distant star at a velocity of v=0.9c and then returns also at a velocity v=0.9c, while twin B remains on Earth.
- > Twin A measures a travel time of 10 years (according to twin A's clock) to get to the star, and then 10 years to return to Earth. v = 0.9c

Question 2

How much older is **twin B**, when **twin A** returns to Earth?

Answer 2

If twin B is in the x-y frame (Earth), and twin A is in the x'-y' frame (spaceship), then

$$\Delta T = \gamma \Delta T' = \gamma T_0 = 2.29 \times 20 \ years = 45.8 \ years$$
 with $\gamma = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}} = 2.29$ Twin B has aged 45.8 years while remaining on Earth !!!

- Figure 7.2. Twin A travels to a distant star at a velocity of v=0.9c and then returns also at a velocity v=0.9c, while twin B remains on Earth.
- > Twin A measures a travel time of 10 years (according to twin A's clock) to get to the star, and then 10 years to return to Earth.

Question 3: the paradox

Twin A sees twin B travelling away from the spaceship on "spaceship Earth", so why doesn't twin A age faster instead?

- > Twin A travels to a distant star at a velocity of v=0.9c and then returns also at a velocity v=0.9c, while twin B remains on Earth.
- > Twin A measures a travel time of 10 years (according to twin A's clock) to get to the star, and then 10 years to return to Earth.

Question 3: the paradox

Twin A sees twin B travelling away from the spaceship on "spaceship Earth", so why doesn't twin A age faster instead?

Answer 3

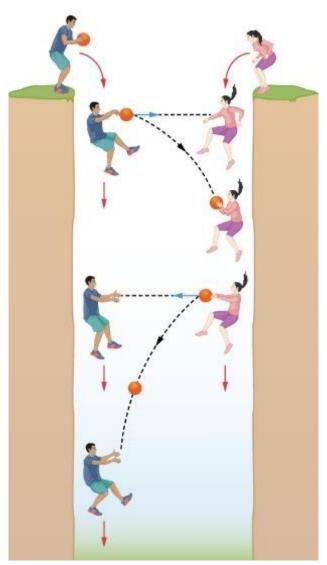
Twin A must accelerate and decelerate, so twin A is briefly in a **non-inertial frame**. The motions of twin A & twin B are not symmetric.

General Relativity

Equivalence Principle

A coordinate system that is falling freely in a gravitational field is (equivalent to) an inertial frame.

Corollary

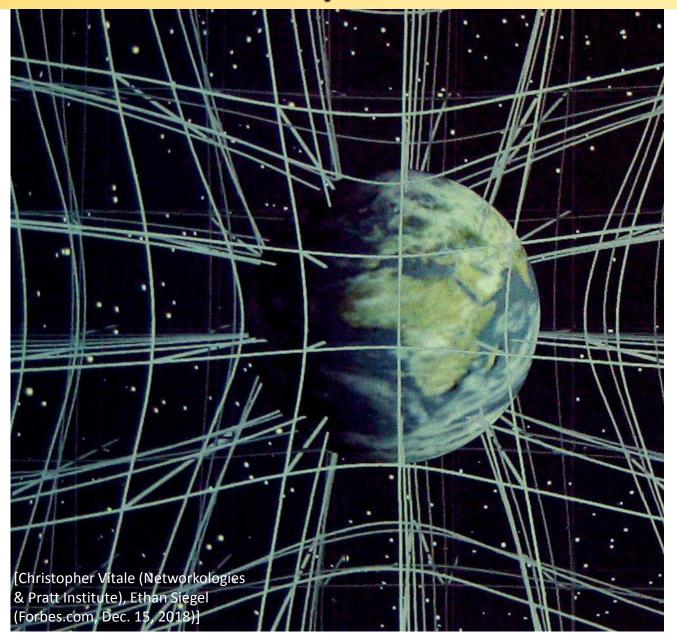

You cannot tell if you are at rest in a non-gravitational field (i.e. in a standard inertial frame) or freely falling under gravity based on local measurements.

Equivalence Principle

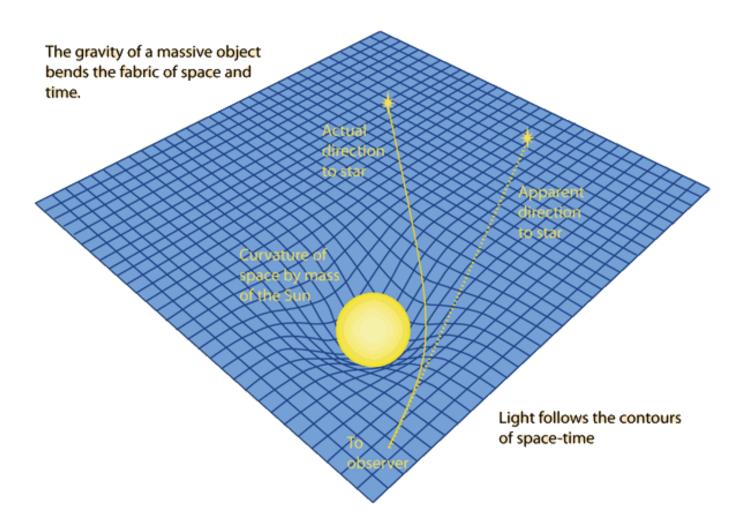
You cannot tell if you are at rest in free space (i.e. in a standard inertial frame) or freely falling under gravity based in based on local measurements.

Example

- Two people play catch as they descend into a bottomless abyss.
- ➤ Since the people and ball all fall at the same speed, it appears to them that they can play catch by throwing the ball in a straight line between them.
- Within their frame of reference, there appears to be no gravity.



[OpenStax: Astronomy]


Equivalence Principle on ISS

Curved Space-Time

Curved Space-Time: light rays in 2D

