Today's Topics

Wednesday, November 11, 2020 (Week 12, lecture 33) – Chapter 24.

A. Special Relativity review.

B. General Relativity.

- C. Gravitational redshift.
- D. Gravitational Waves.
- E. Black holes.

Today's Topics

Wednesday, November 11, 2020 (Week 12, lecture 33) – Chapter 24.

A. Special Relativity review.

What happens when you travel close to the speed of light "c" **B. General Relativity.**

C. Gravitational redshift.

D. Gravitational Waves.

E. Black holes.

Today's Topics

Wednesday, November 11, 2020 (Week 12, lecture 33) – Chapter 24.

D. Gravitational Waves.

E. Black holes.

Special Relativity (REVIEW)

Principle of Relativity

The laws of physics are the same in all inertial reference frames.

Corollary #1

You cannot tell if you are moving (based on local measurements) in an inertial frame.

Corollary #2: Universal speed of light

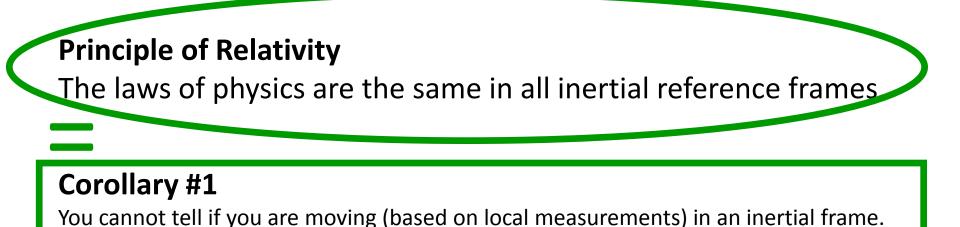
The speed of light in vacuum is the same in all inertial frames, regardless of the motion of the source.

Special Relativity (REVIEW)

Principle of Relativity

The laws of physics are the same in all inertial reference frames.

Corollary #1


You cannot tell if you are moving (based on local measurements) in an inertial frame.

Corollary #2: Universal speed of light

The speed of light in vacuum is the same in all inertial frames, regardless of the motion of the source.

Special Relativity (REVIEW)

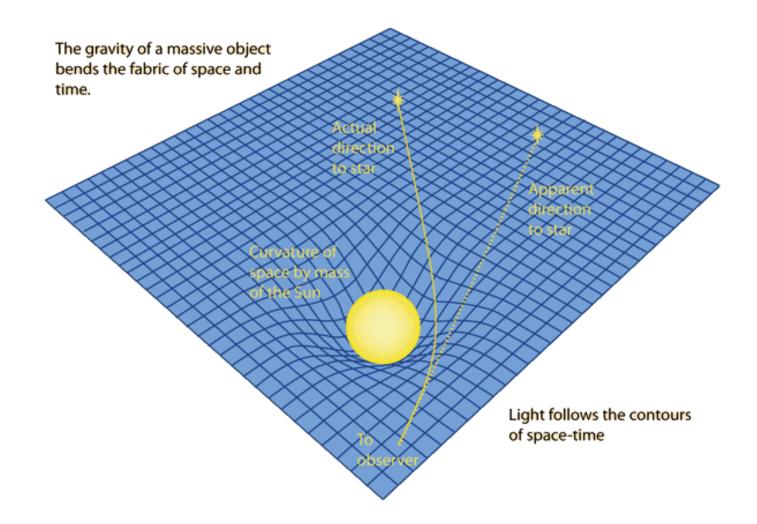
Corollary #2: Universal speed of light

The speed of light in vacuum is the same in all inertial frames, regardless of the motion of the source.

General Relativity

Equivalence Principle

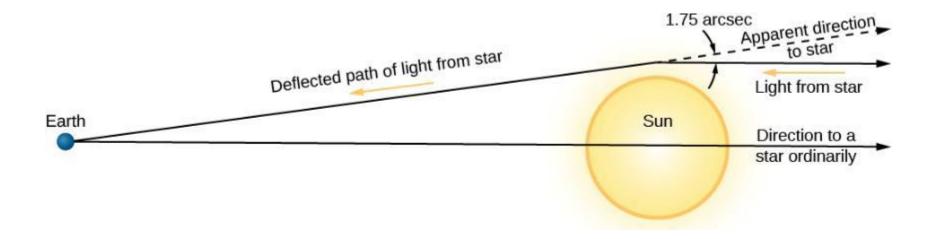
A coordinate system that is falling freely in a gravitational field is (equivalent to) an inertial frame.


Corollary

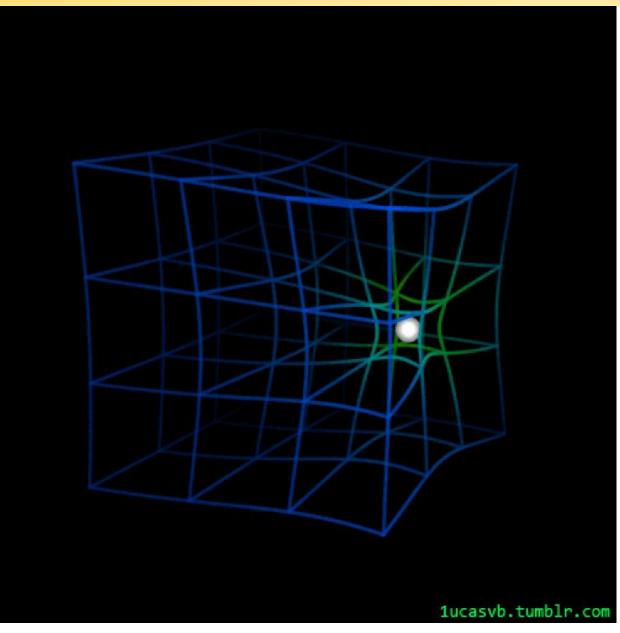
You cannot tell if you are at rest in a non-gravitational field (i.e. in a standard inertial frame) or freely falling under gravity based in based on local measurements.

Equivalence Principle on ISS

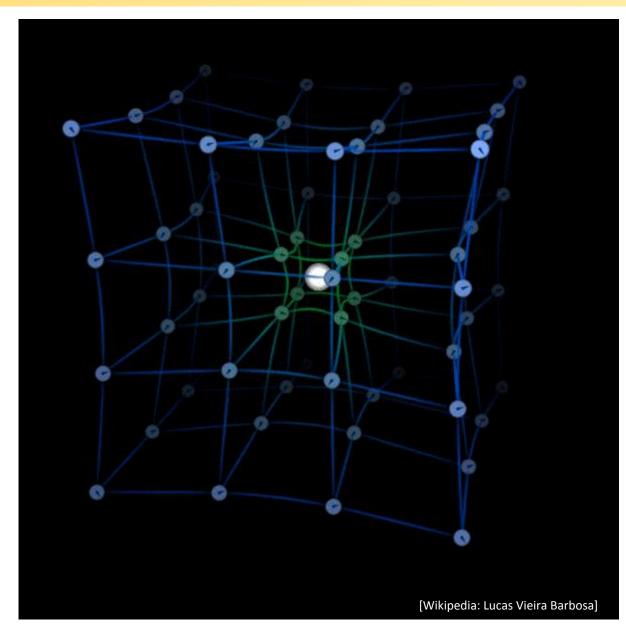
Curved Space-Time: light rays in 2D



[http://hyperphysics.phy-astr.gsu.edu/hbase/Relativ/grel.html]


Curved Space-Time

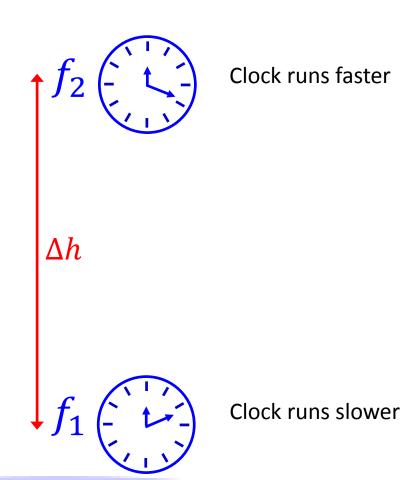
Eddington's measurement of deflection of light


- > Arthur Eddington measures the deflection of starlight by the Sun.
- > 1919 solar eclipse: West Africa & Brazil.
- The star appears shifted: Measurements show deflection that agrees with General Relativity.

Curved Space-Time

Curved Space-Time

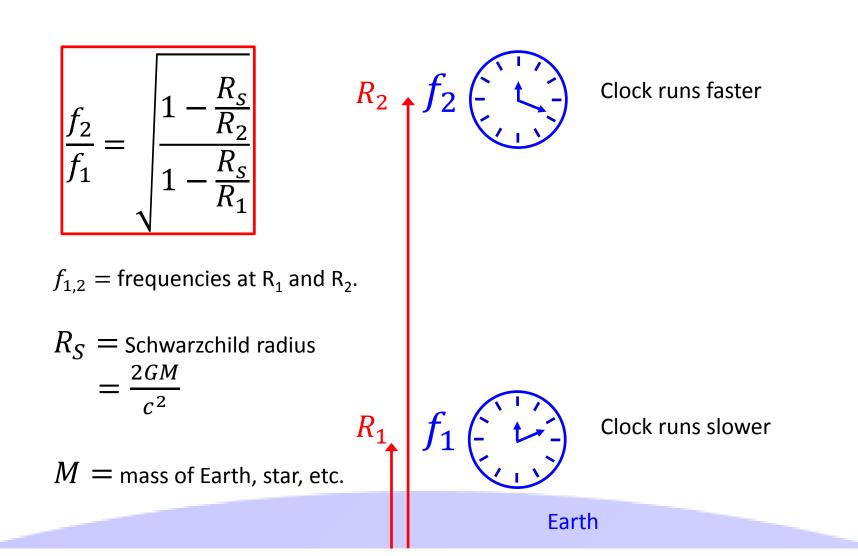
Gravitational Time Dilation: small heights


Clocks in a gravitational field run slower than clocks in free space.

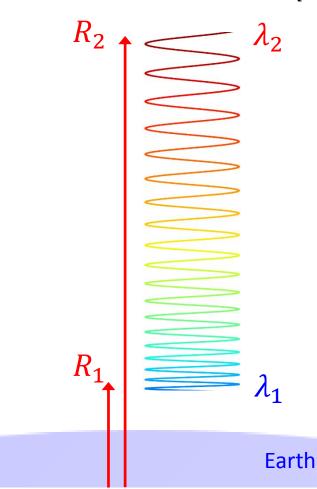
For small changes in height Δh :

 $\frac{\Delta f}{f} = \frac{g\Delta h}{c^2}$

f = frequency of clock

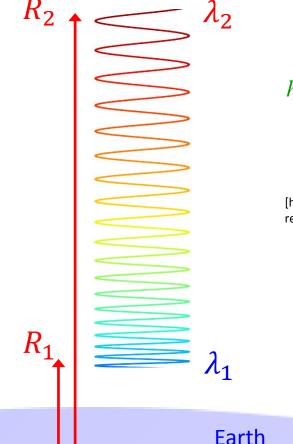

g = acceleration of gravity = 9.8 m/s² at Earth's surface

Earth


Gravitational Time Dilation: large distances

Clocks in a gravitational field run slower than clocks in free space.

Gravitational Redshift: Light shifts to the **red** when it escapes gravity

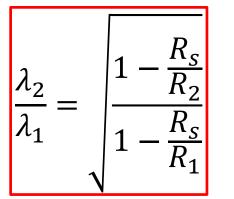

As light leaves the gravitational pull of Earth/star/blackhole, it loses "kinetic energy" and shifts to the red ($E_{photon} = hf$).

[https://sites.google.com/site/salamcosmology/ research/relativistic-effects-on-lss]

Gravitational Redshift: Light shifts to the **red** when it escapes gravity

As light leaves the gravitational pull of Earth/star/blackhole, it loses "kinetic energy" and shifts to the red ($E_{photon} = hf$).

I Planck's Constant $h = 6.626 \times 10^{-34}$ J.S


[https://sites.google.com/site/salamcosmology/ research/relativistic-effects-on-lss]

Gravitational Redshift: Light shifts to the **red** when it escapes gravity

As light leaves the gravitational pull of Earth/star/blackhole, it loses "kinetic energy" and shifts to the red ($E_{photon} = hf$).

 K_2

 R_1

 $\lambda_{1,2}$ = wavelengths at R₁ and R₂.

$$R_S =$$
 Schwarzchild radius
= $\frac{2GM}{c^2}$

M = mass of Earth, star, etc.

b the red (
$$E_{photon} = hf$$
).
 λ_2 Planck's
Constant
 $h = 6.626 \times 10^{-34}$ J.S
[https://sites.google.com/site/salamcosmology/
research/relativistic-effects-on-lss]

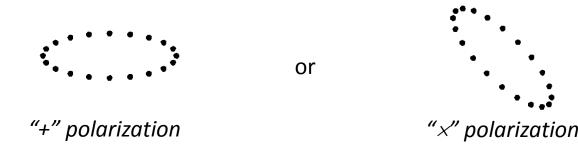
Earth

Gravitational Waves

- Accelerating and orbiting masses will emit gravitational waves.
- Gravitational waves are a consequence of the finite speed of gravity (speed of light).

 \rightarrow a change in gravity's strength propagates at the speed of light. (i.e. it's not instantaneous.)

- > Only large masses emit significant gravitational waves.
 - → Orbiting **black holes** and **neutron stars**.
 - \rightarrow Masses must be close together (i.e. fast moving) for significant emission.

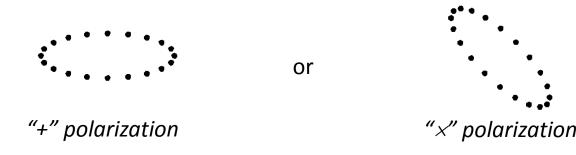

Gravitational Waves

- Accelerating and orbiting masses will emit gravitational waves.
- Gravitational waves are a consequence of the finite speed of gravity (speed of light).

 \rightarrow a change in gravity's strength propagates at the speed of light. (i.e. it's not instantaneous.)

- > Only large masses emit significant gravitational waves.
 - → Orbiting **black holes** and **neutron stars**.
 - \rightarrow Masses must be close together (i.e. fast moving) for significant emission.

A passing gravitational wave applies weak pulling & stretching forces along two perpendicular axes.



Gravitational Waves

- Accelerating and orbiting masses will emit gravitational waves.
- Gravitational waves are a consequence of the finite speed of gravity (speed of light).

 \rightarrow a change in gravity's strength propagates at the speed of light. (i.e. it's not instantaneous.)

- > Only large masses emit significant gravitational waves.
 - → Orbiting **black holes** and **neutron stars**.
 - \rightarrow Masses must be close together (i.e. fast moving) for significant emission.
- A passing gravitational wave applies weak pulling & stretching of <u>space</u> along two perpendicular axes (and <u>time</u>).

Gravitational Wave "Telescope" LIGO: Laser Interferometer Gravitational-Wave Observatory

Black Holes

Black hole

A celestial object whose gravity is so strong that even light cannot escape from it.

- \rightarrow Light emitted outside of the **event horizon** (i.e. **Schwarzchild radius**) can escape.
- \rightarrow Light emitted within the **event horizon** cannot escape.
- \rightarrow The event horizon / Schwarzchild radius defines the size and surface of a black hole.

Black Holes

Black hole

A celestial object whose gravity is so strong that even light cannot escape from it.

- → Light emitted outside of the **event horizon** (i.e. **Schwarzchild radius**) can escape.
- \rightarrow Light emitted within the **event horizon** cannot escape.
- \rightarrow The event horizon / Schwarzchild radius defines the size and surface of a black hole.

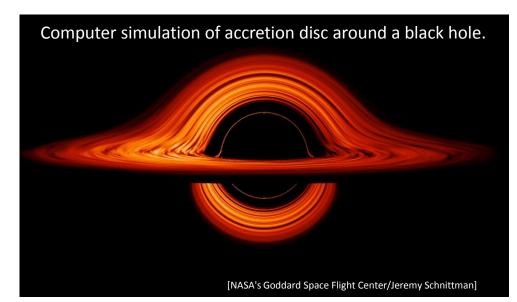
Schwarzchild radius= $R_S = \frac{2GM}{c^2}$

The event horizon is about 2-3 times smaller than the black shadow.

Supermassive black hole at center of M87 galaxy. [Event Horizon Telescope, www.eso.org, λ=1.3 mm]

Black Holes

Black hole


A celestial object whose gravity is so strong that even light cannot escape from it.

- \rightarrow Light emitted outside of the **event horizon** (i.e. **Schwarzchild radius**) can escape.
- \rightarrow Light emitted within the **event horizon** cannot escape.
- \rightarrow The event horizon / Schwarzchild radius defines the size and surface of a black hole.

Schwarzchild radius= $R_S = \frac{2GM}{c^2}$

The **event horizon** is about 2-3 times smaller than the black shadow.

2020 Nobel Prize in Physics Black Hole Physics & Astronomy

Roger Penrose (U. of Oxford)

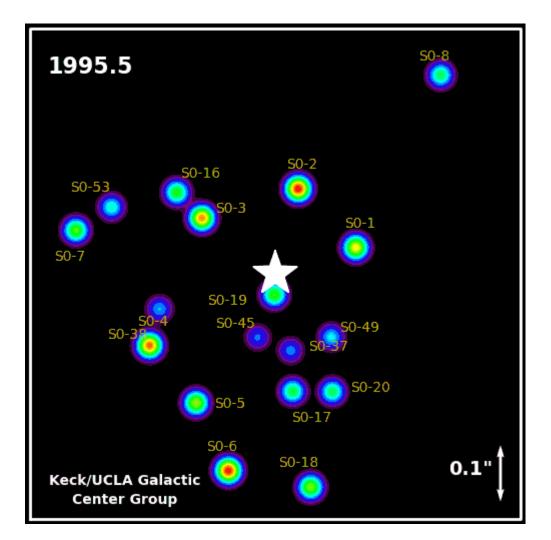
Reinhard Genzel (Max Planck Inst.)

Andrea Ghez (UC Los Angeles

2020 Nobel Prize in Physics Black Hole Physics & Astronomy

Roger Penrose (U. of Oxford)

Black hole physics & mathematics Discovery of the black hole at the center of our Milky Way galaxy


Reinhard Genzel (Max Planck Inst.)

Andrea Ghez (UC Los Angeles

Black Hole at center of Milky Way

The Sagittarius A* supermassive black hole

Stellar mass black hole

- The **Roche limit** is well <u>outside</u> of the event horizon.
- Any object falling towards the event horizon is **pulled apart** (spaghettified) by the strong **gravity gradient** (<u>tidal force</u>) of the black hole.

Stellar mass black hole

- The **Roche limit** is well <u>outside</u> of the event horizon.
- Any object falling towards the event horizon is **pulled apart** (spaghettified) by the strong **gravity gradient** (<u>tidal force</u>) of the black hole.

Supermassive black hole

- The **Roche limit** is well <u>inside</u> of the event horizon.
- Only after passing the event horizon is an object pulled apart by the black hole.

Stellar mass black hole

- The **Roche limit** is well <u>outside</u> of the event horizon.
- Any object falling towards the event horizon is **pulled apart** (spaghettified) by the strong **gravity gradient** (<u>tidal force</u>) of the black hole.

Supermassive black hole

- The **Roche limit** is well <u>inside</u> of the event horizon.
- Only after passing the event horizon is an object **pulled apart** by the black hole.

What happens if you watch an object fall into a black hole ?

Gravitational redshift: As the object falls its light becomes redder and eventually shifts into radio-waves.

Stellar mass black hole

- The **Roche limit** is well <u>outside</u> of the event horizon.
- Any object falling towards the event horizon is **pulled apart** (spaghettified) by the strong **gravity gradient** (<u>tidal force</u>) of the black hole.

Supermassive black hole

- The **Roche limit** is well <u>inside</u> of the event horizon.
- Only after passing the event horizon is an object **pulled apart** by the black hole.

What happens if you watch an object fall into a black hole ?

Gravitational redshift: As the object falls its light becomes redder and eventually shifts into radio-waves.

Gravitational time dilation: The object appears to slow down as it gets closer and closer to the event horizon.

Stellar mass black hole

- The **Roche limit** is well <u>outside</u> of the event horizon.
- Any object falling towards the event horizon is **pulled apart** (spaghettified) by the strong **gravity gradient** (<u>tidal force</u>) of the black hole.

Supermassive black hole

- The **Roche limit** is well <u>inside</u> of the event horizon.
- Only after passing the event horizon is an object **pulled apart** by the black hole.

What happens if you watch an object fall into a black hole ?

Gravitational redshift: As the object falls its light becomes redder and eventually shifts into radio-waves.

Gravitational time dilation: The object appears to slow down as it gets closer and closer to the event horizon.

→ Very close to the event horizon, the object becomes too redshifted to be well seen and also appears to come to a standstill.

(note: in frame of object, the object falls into black hole.)