Today's Topics

Wednesday, September 2, 2020 (Week 2, lecture 7) – Chapter 3, 4.6.

- B. Angular momentum
- C. Escape velocity
- D. Tides

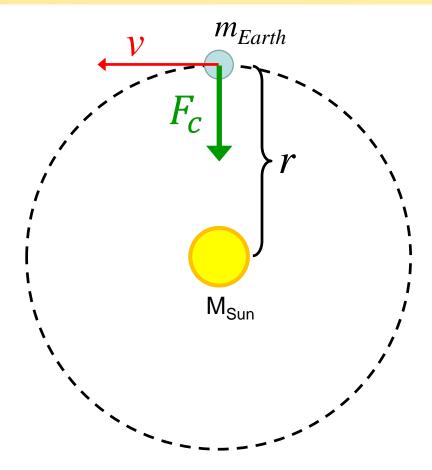
Circular Motion Example: Earth's orbit of Sun

Centripetal force needed to keep Earth on a circular orbit:

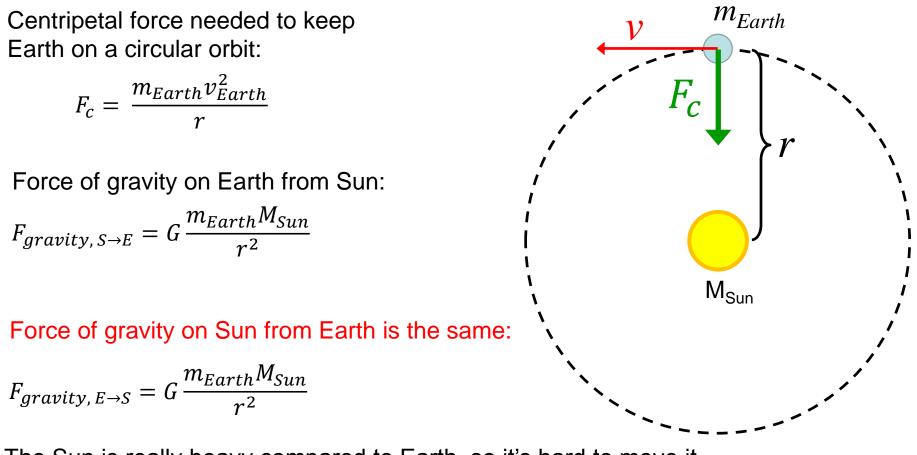
$$F_c = \frac{m_{Earth} v_{Earth}^2}{r}$$

Force of gravity on Earth from Sun:

$$F_{gravity, S \to E} = G \frac{m_{Earth} M_{Sun}}{r^2}$$

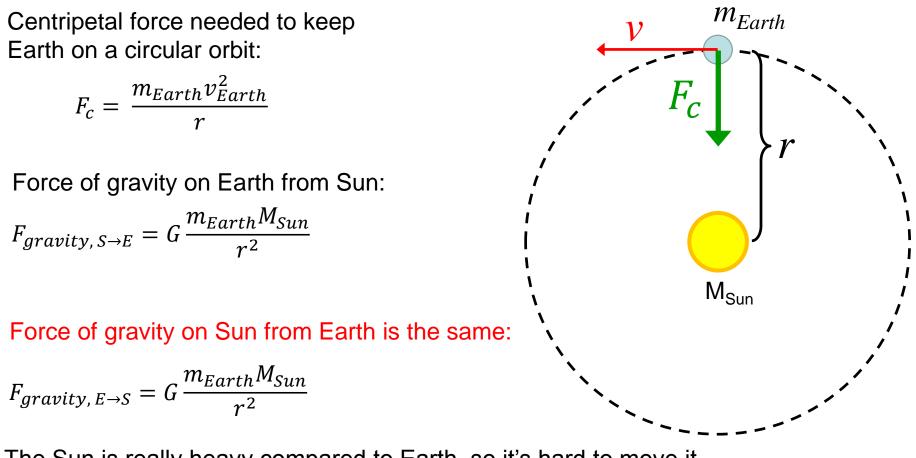


Circular Motion Example: Earth's orbit of Sun



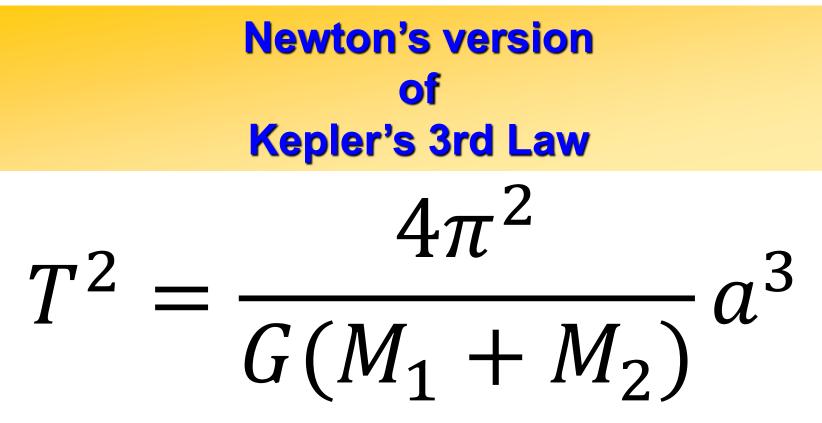
The Sun is really heavy compared to Earth, so it's hard to move it

Circular Motion Example: Earth's orbit of Sun



The Sun is really heavy compared to Earth, so it's hard to move it

WHAT IF: What would happen if the Earth and Sun were comparable in mass?

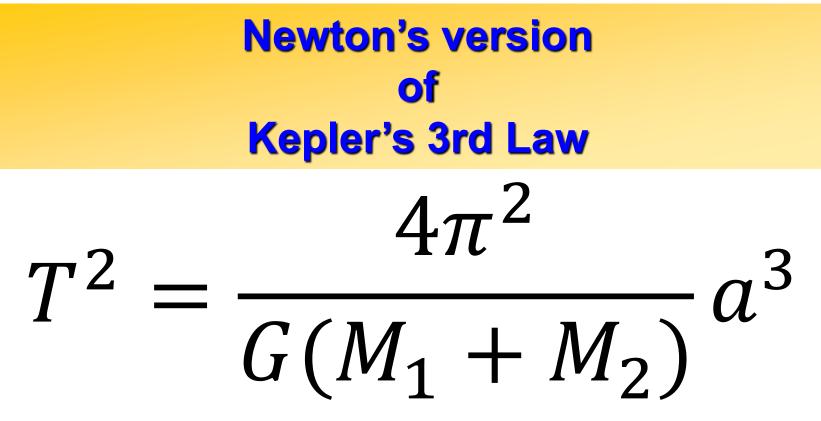


This formula is in SI units

- T = orbital period in seconds
- a = semimajor axis in meters

M_{1,2} =Mass of orbiting objects in Kg

 $G = 6.6743 \times 10^{-11} \text{ m}^3/\text{Kg.s}^2$



This formula is in SI units

- T = orbital period in seconds
- a = semimajor axis in meters

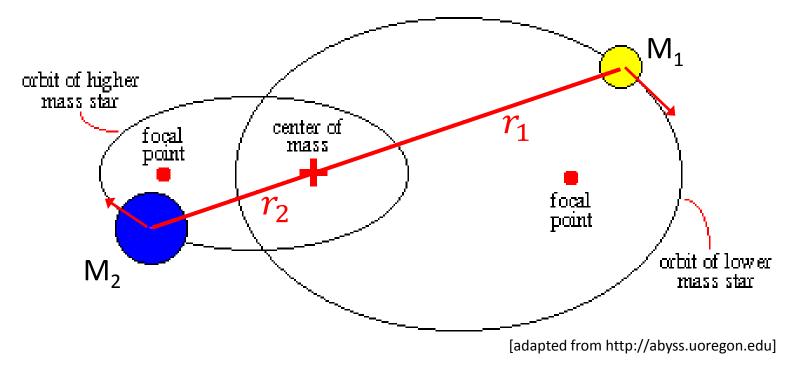
M_{1,2} =Mass of orbiting objects in Kg

 $G = 6.6743 \times 10^{-11} \text{ m}^3/\text{Kg.s}^2$

WHAT IF: What happens to the orbits if the M_1 and M_2 are comparable ?

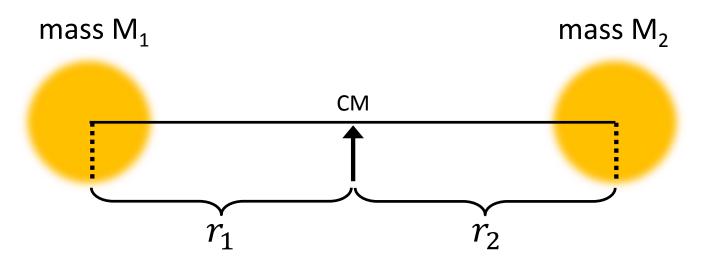
What happens when $M_1 \simeq M_2$?

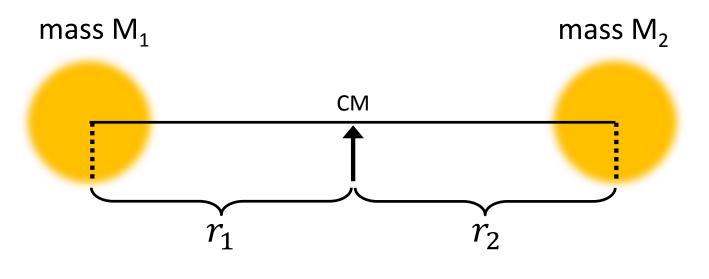
The **center of mass** of M_1 and M_2 serves as the orbiting ellipse focus.

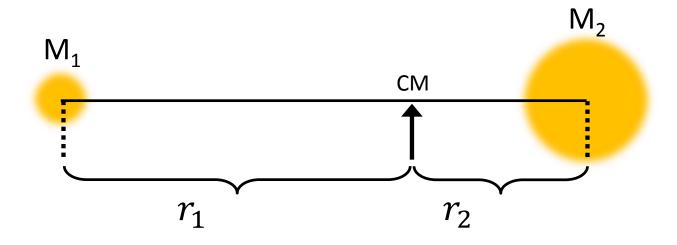


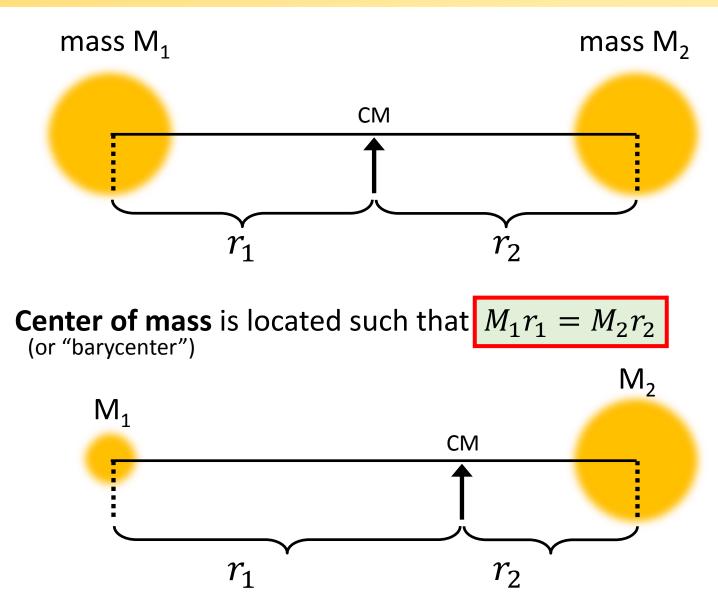
Semimajor axis "a":

The coordinate " $r = r_1 + r_2$ " is the distance between the two masses. It also describes an ellipse (not shown), whose semimajor axis "a" is used in Newton's version of Kepler's 3rd law.









Some Barycenters

$$M_2 - M_1$$
: $r_2 = a \frac{M_1}{M_1 + M_2}$ = distance from CM to M_2

Sun-Earth: $r_2 = 448 \ km = 3.0 \times 10^{-6} \ AU$

Earth-Moon: $r_2 = 4,670$ km with a = 384,000 km = 73% of Earth's radius

Some Barycenters

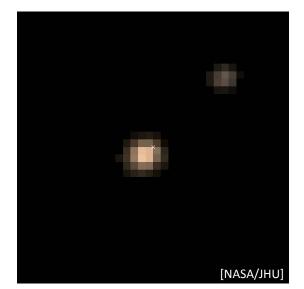
$$M_2 - M_1$$
: $r_2 = a \frac{M_1}{M_1 + M_2}$ = distance from CM to M_2

Sun-Earth: $r_2 = 448 \ km = 3.0 \times 10^{-6} \ \text{AU}$

Earth-Moon: $r_2 = 4,670$ km with a = 384,000 km = 73% of Earth's radius

Pluto – Charon:

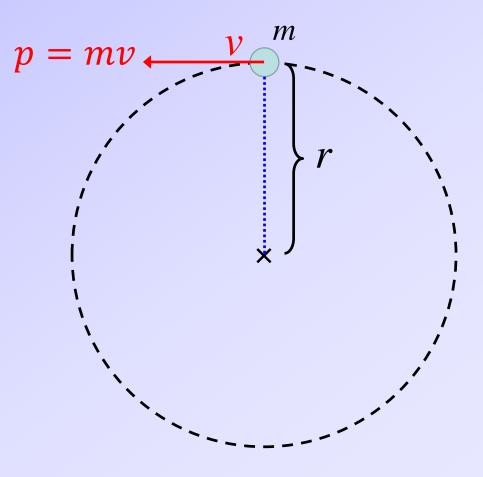
orbital period T = 6.4 days



Conservation of Angular Momentum (1)

angular momentum = L = momentum × radius

 $= p \times r$... = mvr for circular motion



Conservation of Angular Momentum (1)

angular momentum = L = momentum × radius

 $= p \times r$... = mvr for circular motion

\boldsymbol{m} = mvtotal angular momentum r sum of the angular momenta of all the sub-parts of a system

Conservation of Angular Momentum (1)

angular momentum = L = momentum × radius

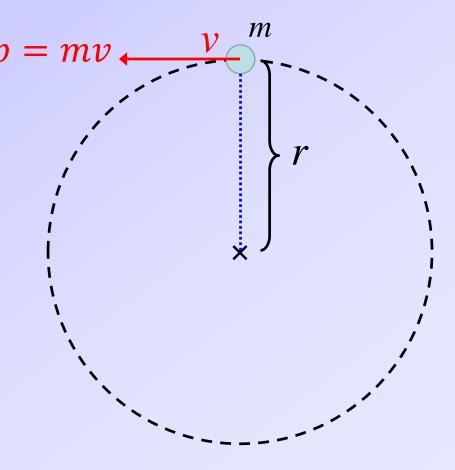
 $= p \times r$... = mvr for circular motion

total angular momentum

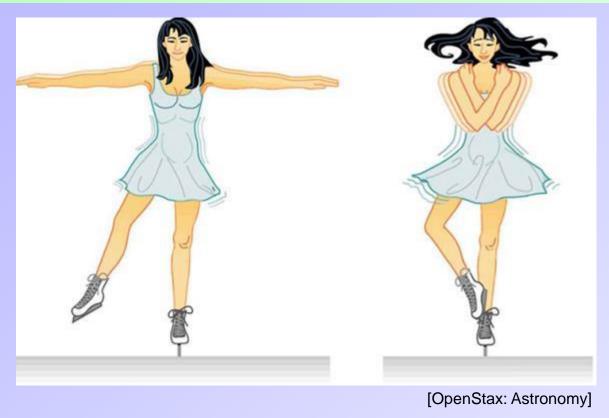
sum of the angular momenta of all the sub-parts of a system

Conservation Law

The total angular momentum of a closed system never changes.

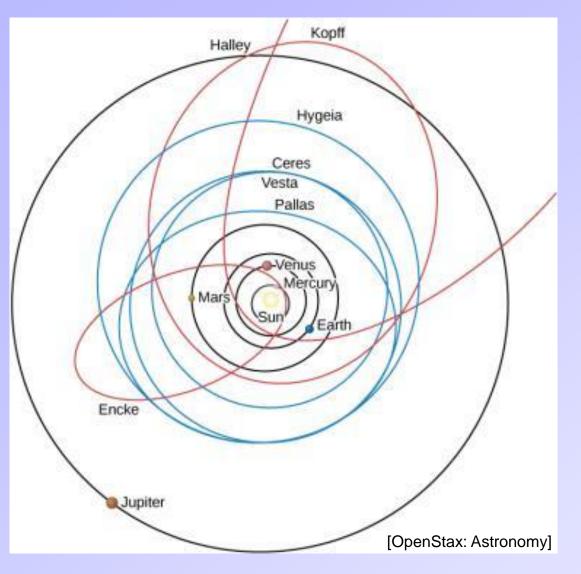


Conservation of Angular Momentum (2)



- When a spinning figure skater brings in her arms, their distance from her spin center is smaller, so her speed increases.
- When her arms are out, their distance from the spin center is greater, so she slows down.

Conservation of Angular Momentum

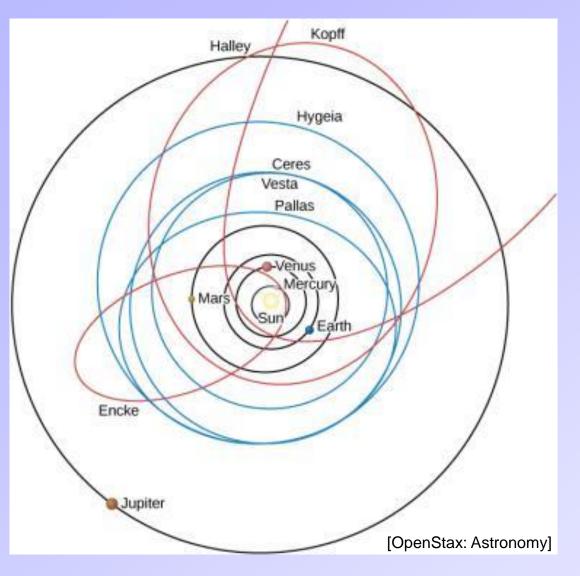


The multiple planets, asteroids, and comets all interact and modify each others orbits.

- → Individual angular momenta change.
- → Total angular momentum of Solar System is constant.

Planets (black), asteroids (blue), comets (red)

Conservation of Angular Momentum

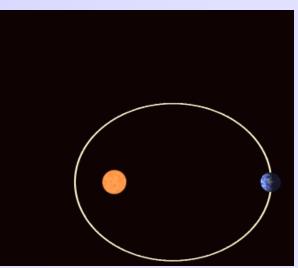


Planets (black), asteroids (blue), comets (red)

The multiple planets, asteroids, and comets all interact and modify each others orbits.

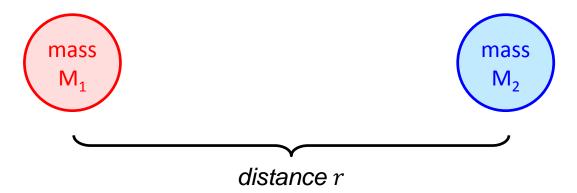
- → Individual angular momenta change.
- → Total angular momentum of Solar System is constant.

Example: Apsidal Precession



By WillowW - Own work, CC BY 3.0, https://commons.wikimedia.org/w/index.php?curid=3416065

Gravitational Potential Energy



Stored gravitational energy = $E_{potential} = -G \frac{M_1 M_2}{r}$

Total Energy =
$$E_{total} = E_{potential} + E_{kinetic}$$

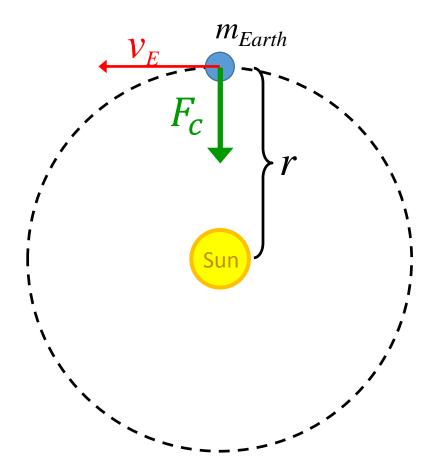
For 2 orbiting bodies (e.g. Sun + Earth): $E_{total} < 0$ For 2 unbound bodies (Earth + Mars rocket): $E_{total} > 0$

Centripetal force needed to keep Earth on a circular orbit:

$$F_c = \frac{m_{Earth} v_{Earth}^2}{r}$$

Force of gravity on Earth from Sun:

$$F_{gravity, S \to E} = G \frac{m_{Earth} M_{Sun}}{r^2}$$



Centripetal force needed to keep Earth on a circular orbit:

$$F_c = \frac{m_{Earth} v_{Earth}^2}{r}$$

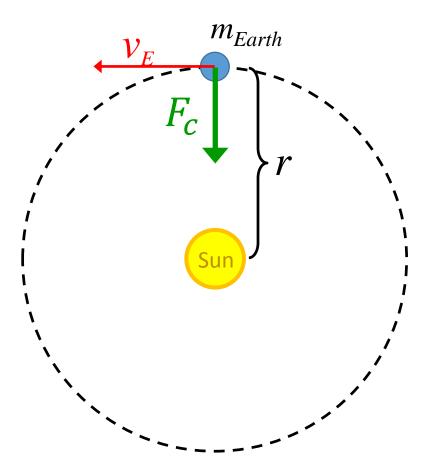
Force of gravity on Earth from Sun:

$$F_{gravity, S \to E} = G \, \frac{m_{Earth} M_{Sun}}{r^2}$$

The **centripetal force** that pulls on Earth to make it orbit the Sun **is gravity:**

$$F_{c} = F_{gravity, S \to E}$$

$$\Leftrightarrow \quad \frac{m_{Earth} v_{Earth}^{2}}{r} = G \frac{m_{Earth} M_{Sun}}{r^{2}}$$



Centripetal force needed to keep Earth on a circular orbit:

$$F_c = \frac{m_{Earth} v_{Earth}^2}{r}$$

Force of gravity on Earth from Sun:

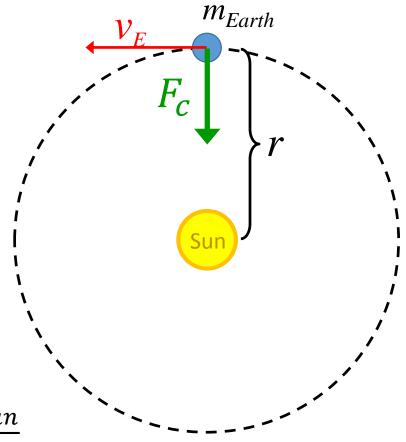
$$F_{gravity, S \to E} = G \frac{m_{Earth} M_{Sun}}{r^2}$$

The **centripetal force** that pulls on Earth to make it orbit the Sun **is gravity:**

$$F_{c} = F_{gravity, S \to E}$$

$$\Leftrightarrow \frac{m_{Earth}v_{Earth}^{2}}{r} = G \frac{m_{Earth}M_{Sun}}{r^{2}}$$

$$\Leftrightarrow \frac{1}{2}m_{Earth}v_{Earth}^{2} = \frac{1}{2}G \frac{m_{Earth}M_{Sun}}{r}$$



 m_{Earth}

Centripetal force needed to keep Earth on a circular orbit:

$$F_c = \frac{m_{Earth} v_{Earth}^2}{r}$$

Force of gravity on Earth from Sun:

$$F_{gravity, S \to E} = G \frac{m_{Earth} M_{Sun}}{r^2}$$

The **centripetal force** that pulls on Earth to

make it orbit the Sun is gravity:

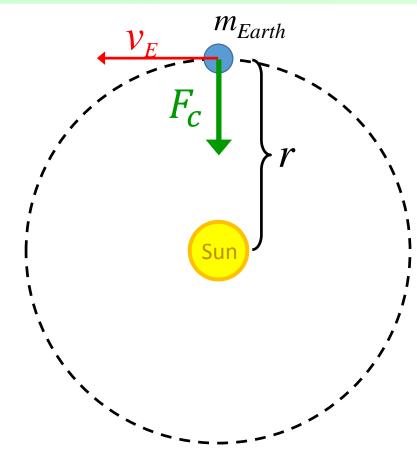
$$F_{c} = F_{gravity, S \to E}$$

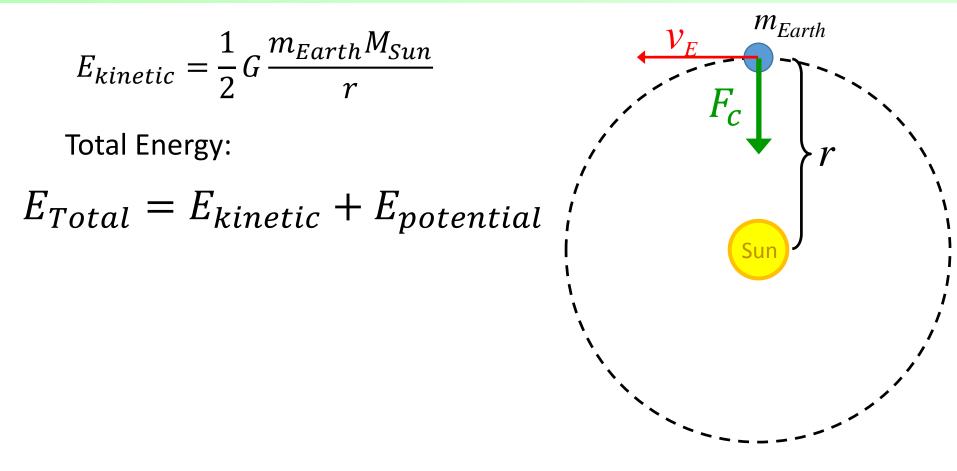
$$\Leftrightarrow \frac{m_{Earth}v_{Earth}^{2}}{r} = G \frac{m_{Earth}M_{Sun}}{r^{2}}$$

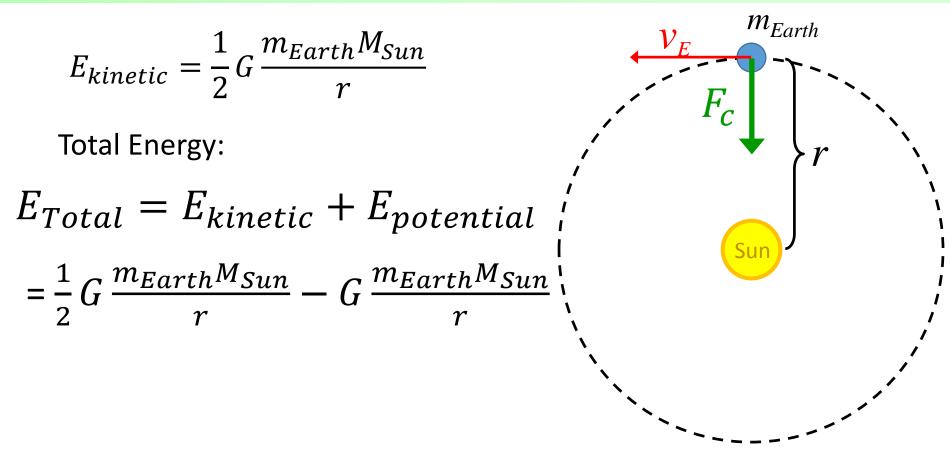
$$\Leftrightarrow \frac{1}{2}m_{Earth}v_{Earth}^{2} = \frac{1}{2}G \frac{m_{Earth}M_{Sun}}{r}$$

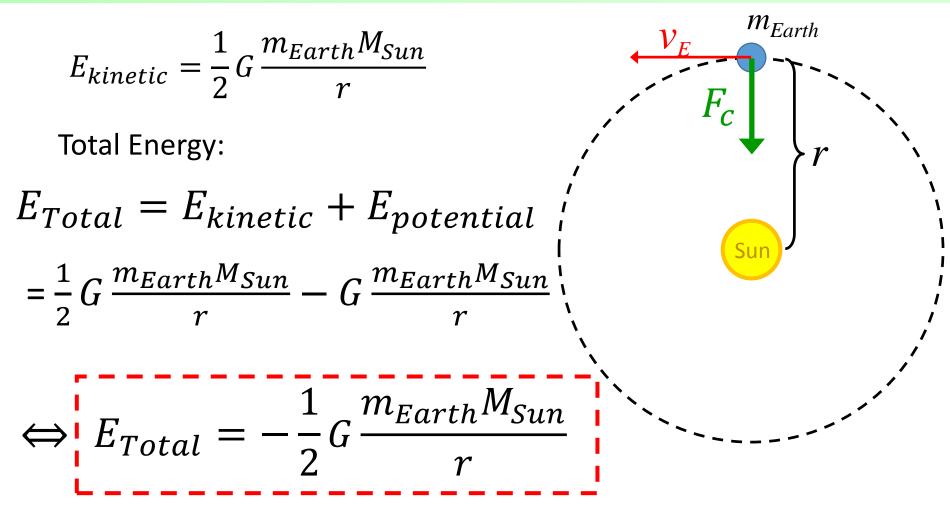
$$\Leftrightarrow E_{kinetic} = \frac{1}{2}m_{Earth}v_{Earth}^{2} = \frac{1}{2}G \frac{m_{Earth}M_{Sun}}{r}$$

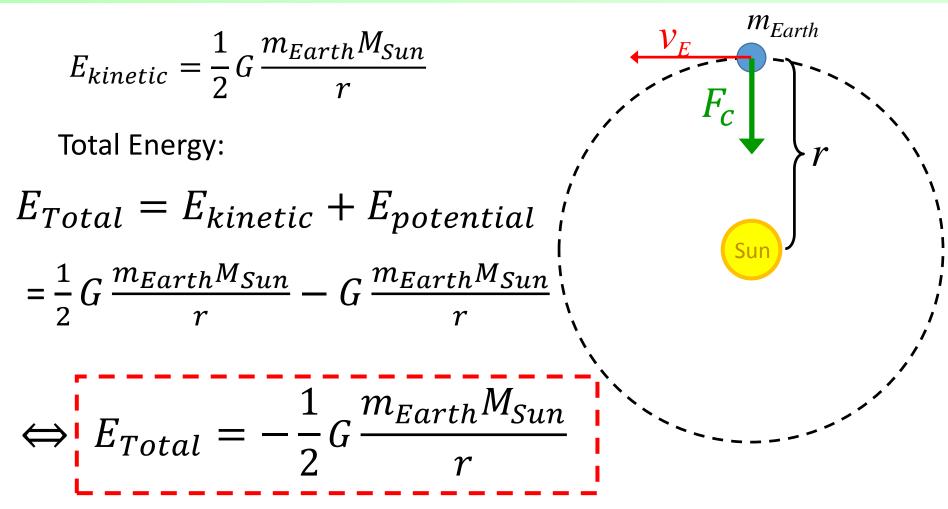
$$E_{kinetic} = \frac{1}{2} G \frac{m_{Earth} M_{Sun}}{r}$$









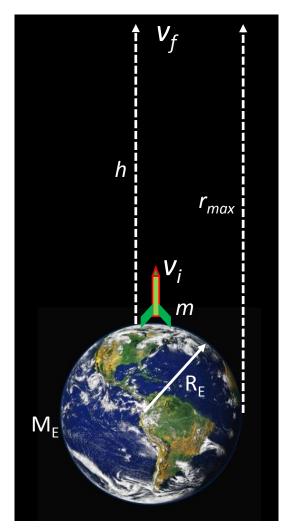


The bound orbital energy is negative: $E_{Total} < 0$ *Example:* When a rocket wants to orbit another planet it has to slow (lower its energy) in order to go into orbit.

Escape Velocity

Question

What is the minimum velocity needed to escape Earth's gravity?



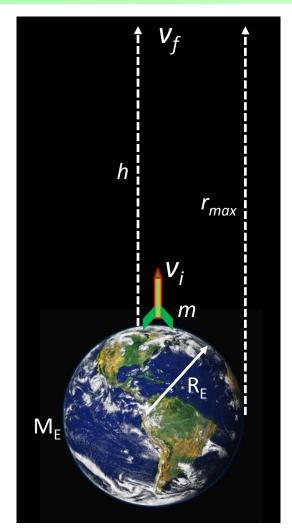
$$v_{escape} = \sqrt{\frac{2GM_E}{R_E}}$$

= 11.2 km/s on Earth

Note 1: escape velocity depends on your starting point.

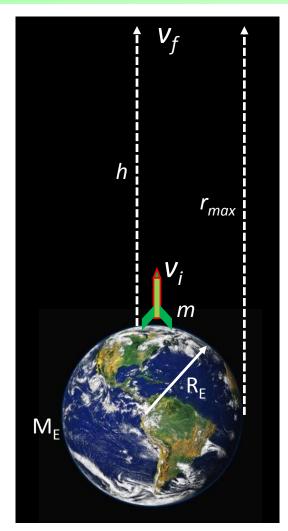
Note 2: Since the Earth spins, objects at "rest" close to the equator already have a significant velocity.

 \rightarrow Rockets are typically launched close to the equator (or in Florida)



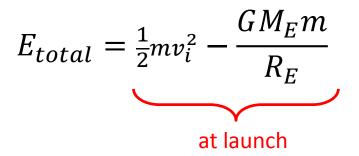
The projectile reaches its maximum altitude when

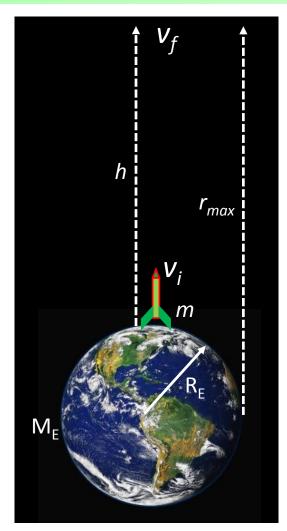
 $v_{final} = v_f = 0$



The projectile reaches its maximum altitude when $v_{final} = v_f = 0$

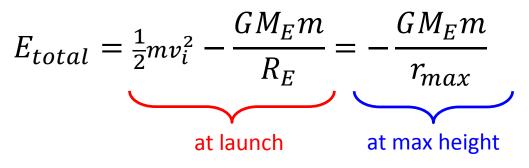
Conservation of total energy:

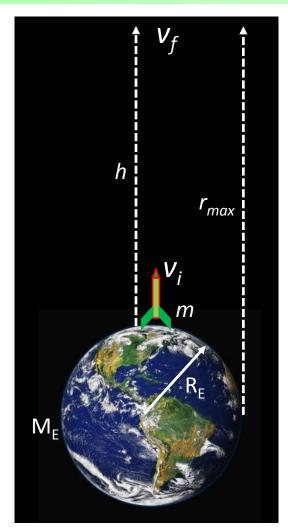




The projectile reaches its maximum altitude when $v_{final} = v_f = 0$

Conservation of total energy:

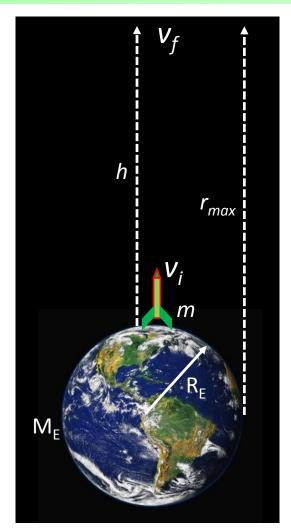




The projectile reaches its maximum altitude when $v_{final} = v_f = 0$

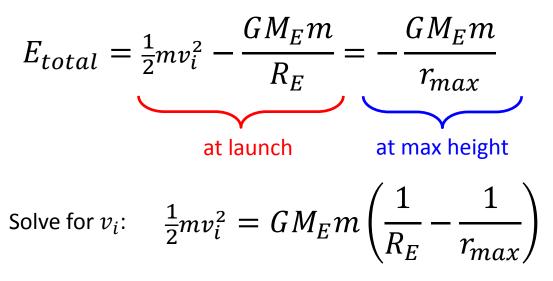
Conservation of total energy:



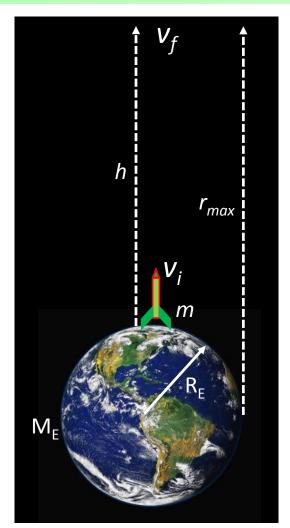


The projectile reaches its maximum altitude when $v_{final} = v_f = 0$

Conservation of total energy:

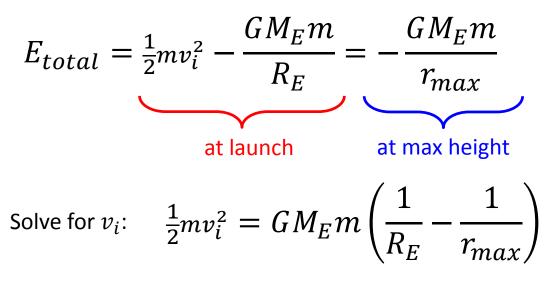


The projectile just barely escapes Earth's gravity when $v_{final} = 0$ at $r_{max} \rightarrow \infty$:



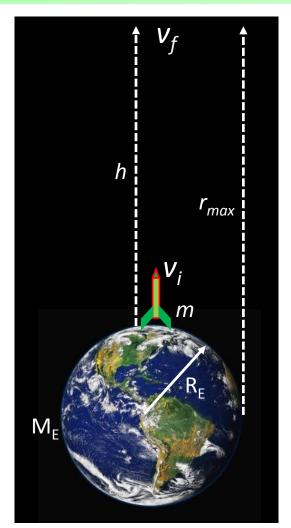
The projectile reaches its maximum altitude when $v_{final} = v_f = 0$

Conservation of total energy:



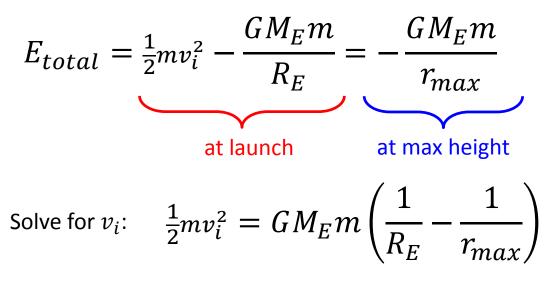
The projectile just barely escapes Earth's gravity when $v_{final} = 0$ at $r_{max} \rightarrow \infty$:

$$v_{escape}^{2} = 2GM_{E}\left(\frac{1}{R_{E}} - \frac{1}{r_{max} \to \infty}\right)$$



The projectile reaches its maximum altitude when $v_{final} = v_f = 0$

Conservation of total energy:



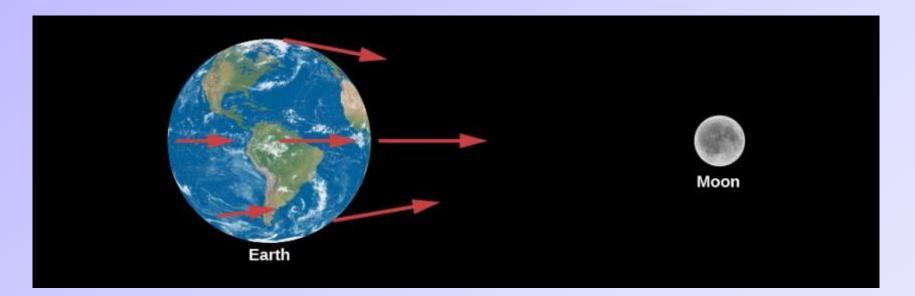
The projectile just barely escapes Earth's gravity when $v_{final} = 0$ at $r_{max} \rightarrow \infty$:

$$v_{escape}^2 = 2GM_E\left(\frac{1}{R_E} - \frac{1}{r_{max} \to \infty}\right) \implies v_{escape} = \sqrt{\frac{2GM_E}{R_E}}$$

Ocean Tides

The force of gravity from the Moon is not uniform over the Earth.

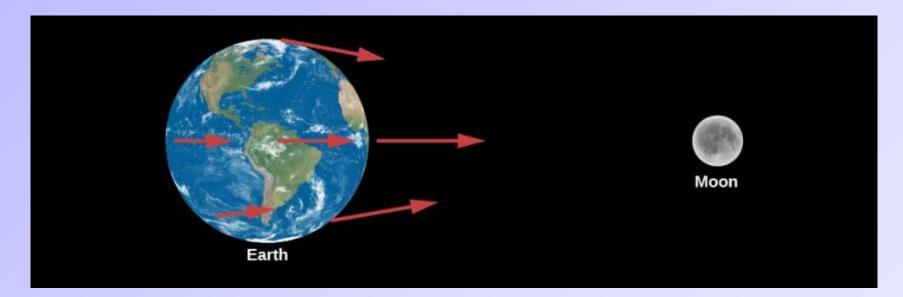
- \rightarrow gravity from Moon falls off as $1/r^2$.
- \rightarrow Near face of Earth feels a stronger force than far face.



Ocean Tides

The force of gravity from the Moon is not uniform over the Earth.

- \rightarrow gravity from Moon falls off as $1/r^2$.
- \rightarrow Near face of Earth feels a stronger force than far face.

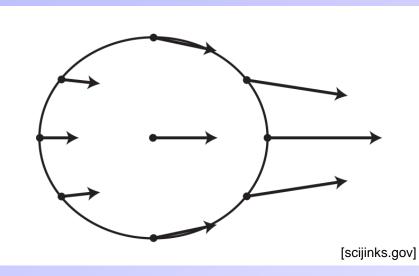


Result

Water on **near side is pulled** towards Moon **more** than average Earth. Water on **far side is pulled** towards Moon **less** than average Earth.

Recall:

- Moon is in "free fall" orbit around Earth.
- Earth is in "free fall" orbit around Moon (albeit small orbit).

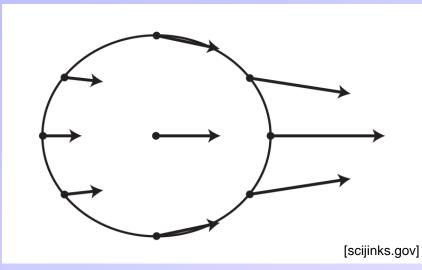


Moon

Recall:

- Moon is in "free fall" orbit around Earth.
- Earth is in "free fall" orbit around Moon (albeit small orbit).

Subtract average gravitational force of Moon. [since Earth is in "free fall" around Moon.]



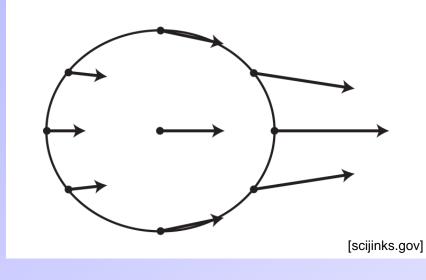
Moon

[scijinks.gov]

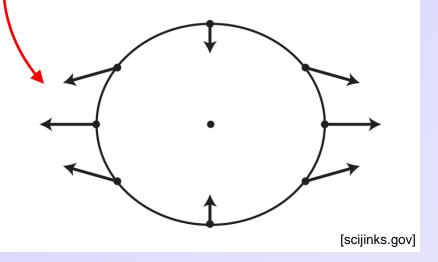
Recall:

- Moon is in "free fall" orbit around Earth.
- Earth is in "free fall" orbit around Moon (albeit small orbit).

Subtract average gravitational force of Moon. [since Earth is in "free fall" around Moon.]

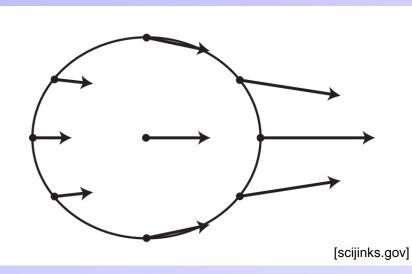


Moon



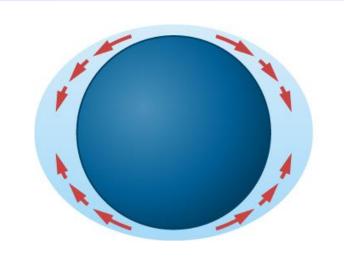
Recall:

- Moon is in "free fall" orbit around Earth.
- Earth is in "free fall" orbit around Moon (albeit small orbit).

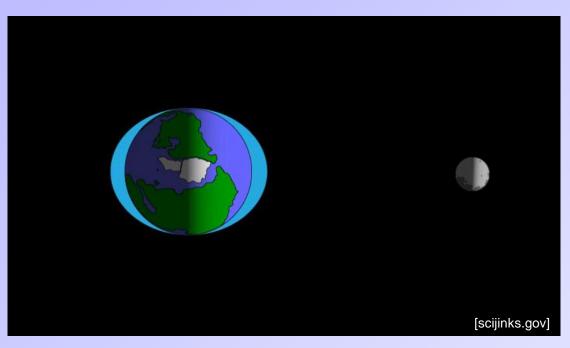


Moon

Ocean water is pulled by the effective force



Ocean Tides



Animation of Earth and Oceans as seen from above North Pole.

Sun's gravity gradient affects tides as well: 46% of Moon's contribution.

- Tides are largest when Sun-Moon-Earth are aligned.
- > Tides are weakest when Sun & Moon are at 90° to each other.
- Shape of ocean basins & winds also affect the strength of tides.
- > The atmosphere also experiences tides.