Week 3 Light & Matter

1. Electromagnetic waves & photons

2. Spectroscopy and atoms

3. Particles, nuclei, and fusion

REMINDER: Midterm #1 is on Monday, September 14.

#### **Today's Topics**

Friday, September 4, 2020 (Week 3, lecture 8) – Chapter 5.

#### A. Electromagnetic waves

- B. Electromagnetic spectrum
- C. Blackbody radiation
- D. Photons

#### **Speed of Light**

#### The speed of light in vacuum is always $c = 3.0 \times 10^8$ m/s. = 300,000 km/s

**It's an experimental fact** but also very counter-intuitive.

#### **Speed of Light**

The speed of light in vacuum is always  $c = 3.0 \times 10^8$  m/s. = 300,000 km/s

It's an experimental fact | but also very counter-intuitive.

The speed of light <u>does NOT depend</u> on the observer:

- If observer A is at rest and measures the speed of light of their laser pointer, then they will measure  $c = 3.0 \times 10^8$  m/s.
- If observer B is moving at 290,000 km/s, then they will measure the speed of light of <u>observer A's laser pointer</u> to be c = 3.0 × 10<sup>8</sup> m/s.

### Speed of Light in Matter

The speed of light *in matter is slower* than in vacuum

Speed of light in air = 99.97% of c

Speed of light in water = 75% of c

Speed of light in glass = 67% of c

Speed of light in **diamond = 41% of c** 

Speed of light in silicon  $\simeq 25\%$  of c



[123RF.com]

Note: In engineered atomic gases, light can be brought  $\sim 10$  m/s and even stopped. (Novikova Lab at W&M)

# Light:

#### **Particle or Wave?**



# **Electromagnetic Waves**

James Clerk Maxwell (1831-1879) worked on electricity and magnetism:

- They are different facets of the same phenomenon.
- Light is a wave of electric & magnetic fields.



James Clerk Maxwell

# **Electromagnetic Waves**

James Clerk Maxwell (1831-1879) worked on electricity and magnetism:

- They are different facets of the same phenomenon.
- Light is a wave of electric & magnetic fields.



James Clerk Maxwell

oscillating electric field

oscillating magnetic field
oscillating electric field

# **Electromagnetic Waves**

James Clerk Maxwell (1831-1879) worked on electricity and magnetism:

- They are different facets of the same phenomenon.
- Light is a wave of electric & magnetic fields.



#### **Wave Properties**



Frequency:  $f = \frac{1}{T}$  = oscillations per second

#### **Wave Properties**



Frequency:  $f = \frac{1}{T}$  = oscillations per second

### **Wave Properties**



#### **Wave Addition: Constructive Interference**



#### **Wave Addition: Constructive Interference**



#### **Wave Addition: Destructive Interference**



#### **Wave Addition: Destructive Interference**





Screen





Screen





[Young's double slit experiment, by Thomas Young (1773-1829) in 1801-1803.]



<sup>[</sup>data by M. Frayser, W&M 2018]

[Young's double slit experiment, by Thomas Young (1773-1829) in 1801-1803.]

# **Electromagnetic Spectrum**

- Visible light represents only a small portion of electromagnetic waves.
- Electromagnetic waves cover over 25 orders of magnitude in frequency & wavelength.

### **Electromagnetic Spectrum**

- Visible light represents only a small portion of electromagnetic waves.
- Electromagnetic waves cover over 25 orders of magnitude in frequency & wavelength.



### **Astronomers use all Wavelengths**

#### Crab Nebula (M1)

- Exploding star remnant (superonova).
- Recorded by Chinese astronomers and others (1054 AD).
- Located at about 6500 ly in our galaxy (Taurus constellation).
- This composite image is by the Hubble Space Telescope (visible light).



#### **Crab Nebula with Radio-Waves**



Radio (Very Large Array)

[VLA/NRAO/AUI/NSF]

### **Crab Nebula with Infrared Light**



[NASA/Spitzer/JPL-Caltech]

### **Crab Nebula with Visible Light**



[NASA, ESA, and Hubble (STScI)]

### **Crab Nebula with Ultraviolet Light**



[XMM-Newton/ESA]

### **Crab Nebula with X-Rays**



X-ray (Chandra)

[NASA/Chandra/CXC]

### **Absorption by Earth's Atmosphere**



# Thermal Light Sources Blackbody Radiation

- The oldest and simplest way to make light is by heating something up (filament, gas, wood, etc).
- Hotter = brighter, colder = dimmer.
- Hotter = white-blue, colder = dim red.
- Color of thermal source  $\rightarrow$  temperature.



incandescent lightbulb

# Thermal Light Sources Blackbody Radiation

- The oldest and simplest way to make light is by heating something up (filament, gas, wood, etc).
- Hotter = brighter, colder = dimmer.
- Hotter = white-blue, colder = dim red.
- Color of thermal source → temperature.



incandescent lightbulb

**Blackbody** (definition): An object that does not reflect light. All light emitted by its surface is due to heat.

# Thermal Light Sources Blackbody Radiation

- The oldest and simplest way to make light is by heating something up (filament, gas, wood, etc).
- Hotter = brighter, colder = dimmer.
- Hotter = white-blue, colder = dim red.
- Color of thermal source → temperature.



incandescent lightbulb

**Blackbody** (definition): An object that does not reflect light. All light emitted by its surface is due to heat.

Ideal thermal source of light

# **Blackbody Radiation (1)**



# **Blackbody Radiation (1)**



# **Blackbody Radiation (1)**



# **Blackbody Radiation (2)**

- Total output power (per unit area)
   = area under the curve
  - = Luminosity (L)
- Power = Energy per time
- Luminosity = Power per area



# **Blackbody Radiation (2)**

- Total output power (per unit area)
   = area under the curve
   = Luminosity (L)
- Power = Energy per time
- Luminosity = Power per area



**Stefan-Boltzman Law:** 
$$L = \sigma T^4$$
  
*Stefan-Boltzman constant:*  $\sigma = 5.67 \times 10^{-8} \frac{W}{m^2 K^4}$ 

# **Blackbody Radiation (2)**

- Total output power (per unit area)
   = area under the curve
   = Luminosity (L)
- Power = Energy per time
- Luminosity = Power per area



**Stefan-Boltzman Law:** 
$$L = \sigma T^4$$
 Increasing temperature, increases output power a lot *Stefan-Boltzman constant:*  $\sigma = 5.67 \times 10^{-8} \frac{W}{m^2 K^4}$ 

# Light is also a particle: the Photon

- Max Planck (1858-1947) figured out that light also behaves as a *particle* using blackbody radiation.
- Albert Einstein (1879-1955) also figured out that light behaves as a particle based on the photo-electric effect.



Max Planck

- Light particle = photon =packet of EM energy
- Energy = hf (f is the frequency) h = Planck's constant = 6.626 × 10<sup>-34</sup> J·s
- Discovery of the photon helped initiate Quantum Mechanics.



Albert Einstein

# Repeat Interference Experiment one photon at a time



# Repeat Interference Experiment one photon at a time



[A. L. Weiss and T. L. Dimitrova, Swiss Physics Society, 2009.]

