Midterm Topics (next Monday, Sept. 14)

- 1. Scientific units, notations
- 2. Exponents, trigonometry
- 3. Length scales in the universe, astronomy units
- 4. Eratosthenes: radius of the Earth
- 5. Retrograde motion of the planets, epicycles
- 6. Earth's axis tilt, seasons, precession
- 7. Important stars and constellations
- 8. Kepler's Laws
- 9. Galileo's & Newton's contributions
- 10. Newton's laws
- 11. Conservation laws: Energy, momentum, angular momentum
- 12. Kinetic & Potential Energy

Midterm Topics (next Monday, Sept. 14)

- 1. Scientific units, notations
- 2. Exponents, trigonometry
- 3. Length scales in the universe, astronomy units
- 4. Eratosthenes: radius of the Earth
- 5. Retrograde motion of the planets, epicycles
- 6. Earth's axis tilt, seasons, precession
- 7. Important stars and constellations
- 8. Kepler's Laws
- 9. Galileo's & Newton's contributions
- 10. Newton's laws
- 11. Conservation laws: Energy, momentum, angular momentum
- 12. Kinetic & Potential Energy

- 13. Gravity
- 14. Circular Motion
- 15. Escape velocity
- 16. Tides
- 17. Electromagnetic waves
- 18. Electromagnetic spectrum
- 19. Blackbody radiation
- 20. Photons
- 21. Electronic structure of atoms
- 22. Spectroscopy
- 23. Doppler effect
- 24. Nuclear particles
- 25. P-P chain solar fusion
- [Not today's topics]

Midterm Format

- ➤ 4 questions (or if two are really easy then 5 questions)
- Mix of quantitative and qualitative questions
- ➤ Time: 9 am 9:50 am
- I will send you the PDF with the midterm questions at 9 am (via Blackboard and e-mail).
- > You must upload your answers in PDF to Gradescope (same as homework).
- Submission window closes at 10 am.
- Answer each question on a separate piece of paper(s) same as homework. You do not need to print out the test.
- Write legibly. Points will be taken off for messy and unreadable test answers.
- Take a picture of each answer for submission to Gradescope (same as homework).

Midterm Rules

- Closed book test.
- No internet searches ... No internet usage.
- > No phones, except for taking photos of your test (after 9:50 am)
- > No use of course website, Blackboard course notes, or OpenStax Astronomy book.
- Calculator recommended (with trig functions).
- Proctoring: The midterm will be taken during a Zoom session. You must have your webcamera ON so that I can see you, i.e. you should not be working at your computer, but instead working with pen and paper on your test. Please remove any digital backgrounds on Zoom.
- Install Honorlock add-in to your browser (Chrome is required).

Today's Topics

Friday, September 11, 2020 (Week 3, lecture 11) – Chapter 16.1-2, 6.

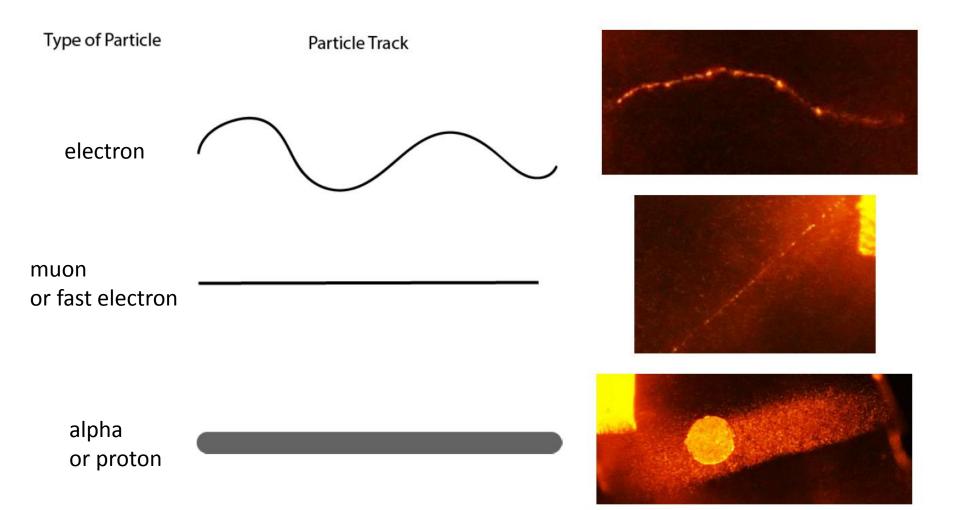
1. Nuclear particles vs Photons

- 2. Astrolabe ancient instrument
- 2. Refractive Telescopes
- 3. Reflecting Telescopes, part 1

Charged Particle Astronomy

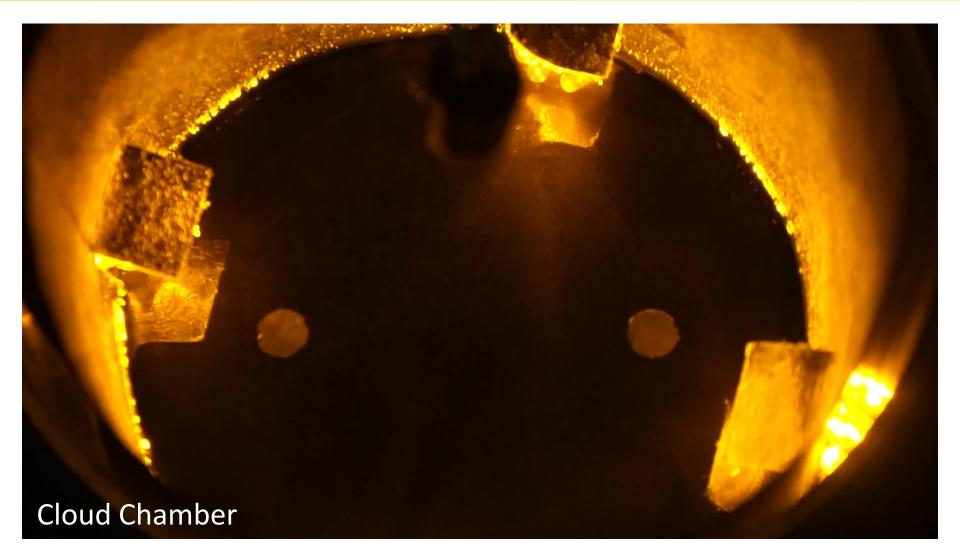

Protons and electrons (and anti-protons & positrons) + α -particles

(charge = +2)


Good: lots of them, easy to detect (in space).

- \rightarrow Stars emit p+ and e- as **solar wind**.
- \rightarrow **Cosmic rays** from violent stellar events.

Alphas, electrons, muons (muon = heavy electron) from radioactive Lead-210



Alphas, electrons, muons (muon = heavy electron) from radioactive Lead-208

[photos by Megan Frayser, W&M 2019]

Alphas, electrons, muons (muon = heavy electron) from background cosmic rays & radioactivity

Charged Particle Astronomy

Protons and electrons (and anti-protons & positrons) + α -particles

(charge = +2)

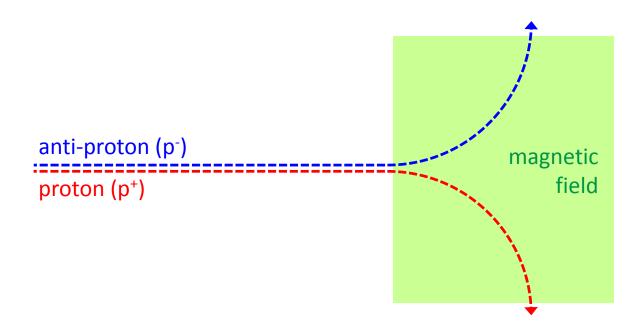
Good: lots of them, easy to detect (in space).

- \rightarrow Stars emit p+ and e- as **solar wind**.
- \rightarrow **Cosmic rays** from violent stellar events.

Charged Particle Astronomy

Protons and electrons (and anti-protons & positrons) + α -particles

(charge = +2)


Good: lots of them, easy to detect (in space).

 \rightarrow Stars emit p+ and e- as **solar wind**.

 \rightarrow **Cosmic rays** from violent stellar events.

Bad: Strongly affected by planetary, solar, and galactic magnetic fields.

 \rightarrow Hard to identify origin/source of particle.

Particle does <u>not</u> "point back" to its origin.

 \rightarrow not useful for imaging.

What are anti-particles ?

- > Antiprotons are protons with <u>negative</u> charge (q=-1).
- > **Positrons** (anti-electrons) are electrons with <u>positive</u> charge (q=+1).
- > Antineutrons are neutrons with <u>opposite magnetic moment</u>.

What are anti-particles ?

- > Antiprotons are protons with <u>negative</u> charge (q=-1).
- > **Positrons** (anti-electrons) are electrons with <u>positive</u> charge (q=+1).
- > Antineutrons are neutrons with <u>opposite magnetic moment</u>.

Antimatter

You can build nuclei and atoms using antiprotons, positrons, and antineutrons.

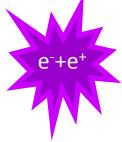
➤ Anti-hydrogen consist of an anti-proton + positron.
→ Anti-hydrogen still feels attractive gravity.

Anti-helium consists of anti-alpha particle + 2 positrons. (charge = +2)

What are anti-particles ?

- > Antiprotons are protons with <u>negative</u> charge (q=-1).
- > **Positrons** (anti-electrons) are electrons with <u>positive</u> charge (q=+1).
- > Antineutrons are neutrons with <u>opposite magnetic moment</u>.

Antimatter


You can build nuclei and atoms using antiprotons, positrons, and antineutrons.

➤ Anti-hydrogen consist of an anti-proton + positron.
→ Anti-hydrogen still feels attractive gravity.

Anti-helium consists of anti-alpha particle + 2 positrons. (charge = +2)

Matter-Antimatter Annihilation

When matter and antimatter meet they **annihilate** each other to ultimately produce **gamma rays** and **neutrinos**.

Neutral Particle Astronomy

Neutrons

Good: Not very affected by magnetic fields.

Bad: Short lifetime of 12 minutes \rightarrow Not useful.

Neutral Particle Astronomy

Neutrons

Good: Not very affected by magnetic fields.

Bad: Short lifetime of 12 minutes \rightarrow Not useful.

Neutrinos

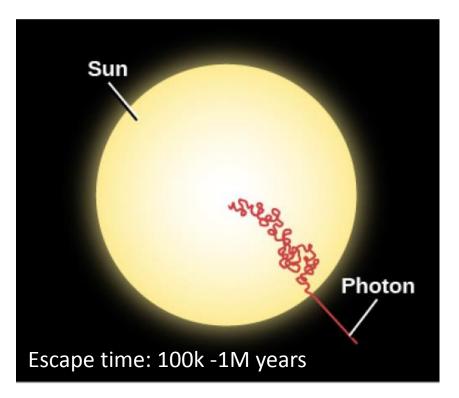
Neutrinos have <u>almost no mass</u> and **barely interact** with anything.

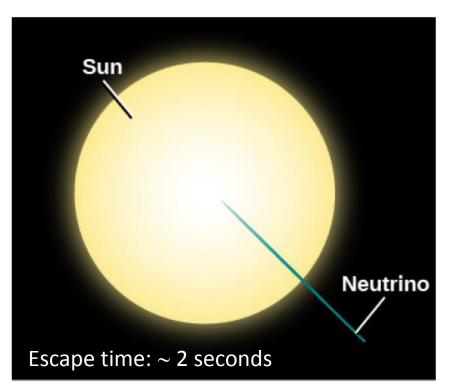
 \rightarrow They travel at speed of light (roughly).

 \rightarrow They feel gravity and weak force (in nucleus).

Good: Not affected by magnetic fields or matter, points back to source

Bad: Hard to detect, hard to image with.


A **light year of lead** would only stop half the neutrinos going through it !!!


Neutrino Benefits

- > Neutrinos go through most astrophysical objects: **no shadowing**.
- > Neutrinos are unaffected by light, electric fields, magnetic fields.
- > Neutrinos allow you to "see" inside stars (i.e. stellar cores).

Neutrino Benefits

- > Neutrinos go through most astrophysical objects: **no shadowing**.
- > Neutrinos are unaffected by light, electric fields, magnetic fields.
- > Neutrinos allow you to "see" inside stars (i.e. stellar cores).

Neutrino Drawbacks

- There are lots of neutrinos, but they barely interact.
 - → About 60 billion solar neutrinos pass through every cm² of your body every second ... but they don't affect/interact with you!!!
- Neutrinos are hard to detect.

 \rightarrow Only 1 in 10¹⁸ neutrinos passing through a 1 m thick detector will interact and be detected.

Neutrino Drawbacks

- There are lots of neutrinos, but they barely interact.
 - → About 60 billion solar neutrinos pass through every cm² of your body every second ... but they don't affect/interact with you!!!
- Neutrinos are hard to detect.

 \rightarrow Only 1 in 10¹⁸ neutrinos passing through a 1 m thick detector will interact and be detected.

- Physics of neutrinos is not completely known.
 - \rightarrow 3 flavors of neutrinos with different masses.
 - \rightarrow Neutrinos oscillate between flavors as they travel.

Neutrino Drawbacks

- There are lots of neutrinos, but they barely interact.
 - → About 60 billion solar neutrinos pass through every cm² of your body every second ... but they don't affect/interact with you!!!
- Neutrinos are hard to detect.

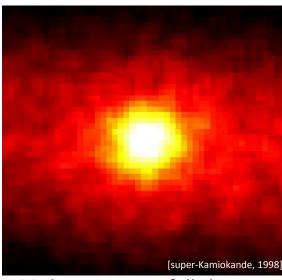
 \rightarrow Only 1 in 10¹⁸ neutrinos passing through a 1 m thick detector will interact and be detected.

Physics of neutrinos is not completely known.

 \rightarrow 3 flavors of neutrinos with different masses.

 \rightarrow Neutrinos oscillate between flavors as they travel.

- Very large detectors with very low count rates.
 - \rightarrow Event rate ~ 1 count per day (varies significantly).
 - \rightarrow Imaging is possible, but slow and low resolution.
- Detectors are generally far underground to avoid cosmic rays.

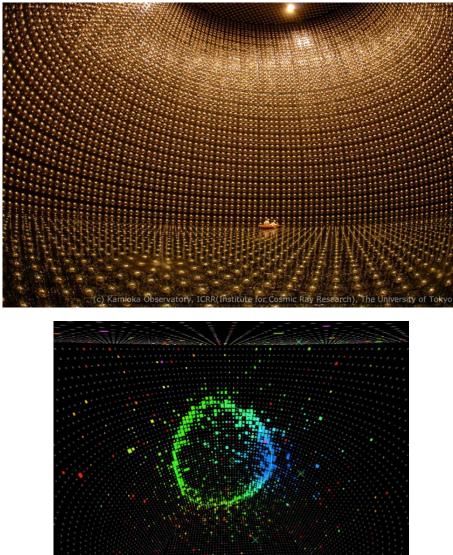

 \rightarrow Lots of infrastructure needed; only possible in special locations.

Neutrino Drawbacks

- There are lots of neutrinos, but they barely interact.
 - → About 60 billion solar neutrinos pass through every cm² of your body every second ... but they don't affect/interact with you!!!
- Neutrinos are hard to detect.

 \rightarrow Only 1 in 10¹⁸ neutrinos passing through a 1 m thick detector will interact and be detected.

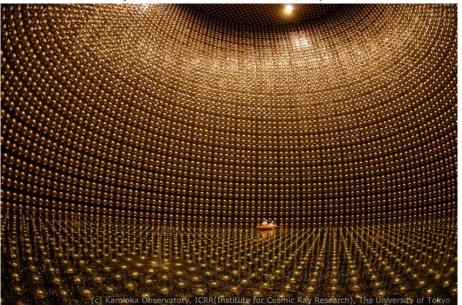
- Physics of neutrinos is not completely known.
 - \rightarrow 3 flavors of neutrinos with different masses.
 - \rightarrow Neutrinos oscillate between flavors as they travel.
- Very large detectors with very low count rates.
 - \rightarrow Event rate ~ 1 count per day (varies significantly).
 - \rightarrow Imaging is possible, but slow and low resolution.

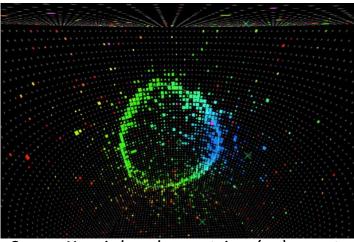


500 day exposure, full sky view.

- Detectors are generally far underground to avoid cosmic rays.
 - \rightarrow Lots of infrastructure needed; only possible in special locations.

Neutrino Detectors

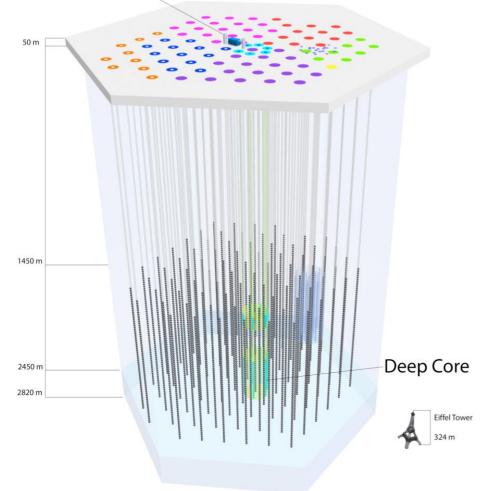

Super-Kamiokande (Japan)



Super-Kamiokande neutrino (v_e) event.

Neutrino Detectors

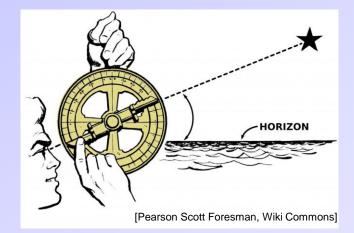
Super-Kamiokande (Japan)



Super-Kamiokande neutrino (v_e) event.

IceCube (Antarctica) *Cubic kilometer of detectors in very deep ice.*

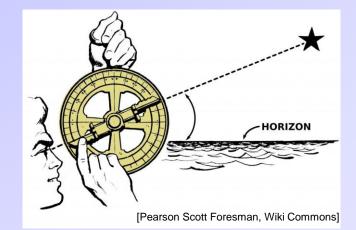
IceCube Lab



[M.G. Aartsen et al., J.Parallel Distrib.Comput. 75, 198-211 (2015); arXiv:1311.5904]

Astrolabe

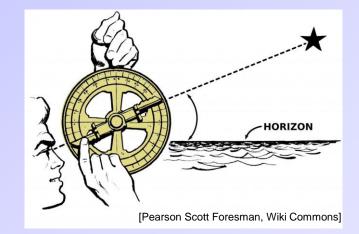
Ancient Astronomy Instrument


- Used for measuring inclination of stars.
- Applications: astronomy, navigation, timekeeping.
- Developed by ancient greeks, c. 220-150 BC.
 - \rightarrow Hypparchus, Apollonius of Perga.
 - \rightarrow Possibly used by Ptolemy (100-170 AD).

Astrolabe

Ancient Astronomy Instrument

- Used for measuring inclination of stars.
- Applications: astronomy, navigation, timekeeping.
- Developed by ancient greeks, c. 220-150 BC.
 - \rightarrow Hypparchus, Apollonius of Perga.
 - \rightarrow Possibly used by Ptolemy (100-170 AD).
- Studied and built by Theon of Alexandria and Hypatia (philosopher, astronomer, mathematician), c. 400 AD.



Hypatia [by Elbert Hubbard, 1908]

Astrolabe

Ancient Astronomy Instrument

- Used for measuring inclination of stars.
- Applications: astronomy, navigation, timekeeping.
- Developed by ancient greeks, c. 220-150 BC.
 - \rightarrow Hypparchus, Apollonius of Perga.
 - \rightarrow Possibly used by Ptolemy (100-170 AD).
- Studied and built by Theon of Alexandria and Hypatia (philosopher, astronomer, mathematician), c. 400 AD.
- Refined by Islamic astronomers (starting in 8th century AD).
 - → AI-Fazari, Albatenius, al-Sufi, al-Tusi, Ibn al-Sarraj.
 - → Many stars retain their Islamic names (e.g. Altair, Aldebaran, Mizar, Alcor, etc)
- Propagated to medieval Europe, India, China.

[by Elbert Hubbard, 1908]

Modern astronomy starts with the invention of the telescope.

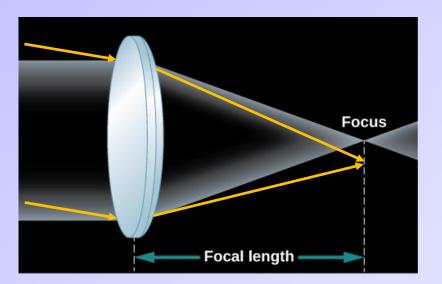
- → Developed by Dutch spectacle/lens makers (Lippershey, Janssen, Metius), c. 1608.
- \rightarrow Galileo develops his own telescope and points it at stars and planets (1609).

Galileo's "cannocchiali" telescope (Museo Galileo, Florence)

Modern astronomy starts with the invention of the telescope.

→ Developed by Dutch spectacle/lens makers (Lippershey, Janssen, Metius), c. 1608.

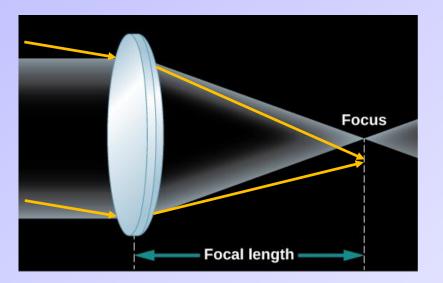
 \rightarrow Galileo develops his own telescope and points it at stars and planets (1609).


Galileo's "cannocchiali" telescope (Museo Galileo, Florence)

Modern astronomy starts with the invention of the telescope.

→ Developed by Dutch spectacle/lens makers (Lippershey, Janssen, Metius), c. 1608.

 \rightarrow Galileo develops his own telescope and points it at stars and planets (1609).

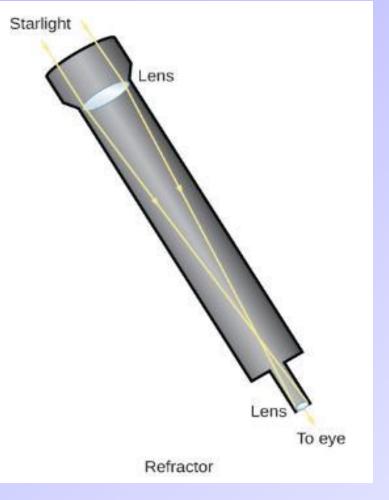

Galileo's "cannocchiali" telescope (Museo Galileo, Florence)

Modern astronomy starts with the invention of the telescope.

→ Developed by Dutch spectacle/lens makers (Lippershey, Janssen, Metius), c. 1608.

 \rightarrow Galileo develops his own telescope and points it at stars and planets (1609).

Basic Lens Physics

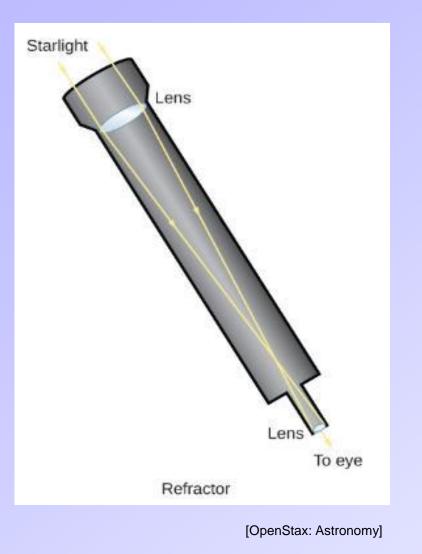

Galileo's "cannocchiali" telescope (Museo Galileo, Florence)

Benefits

- More light forms image (compared with eye).
- Image magnification.

Refracting Telescope

Two or more lenses are used to form an image



Benefits

- Simple to construct.
- Rugged, easy to clean.

Refracting Telescope

Two or more lenses are used to form an image

Benefits

- Simple to construct.
- Rugged, easy to clean.

Drawbacks

- Focal length of lens depends on wavelength (e.g. prism).
 - \rightarrow chromatic aberrations.
 - \rightarrow Achromatic lens reduce this problem.
 - \rightarrow Long focal lengths help.
- Defects in glass distort image.
- Large lenses experience sag in the unsupported middle.
 - \rightarrow Image is distorted.

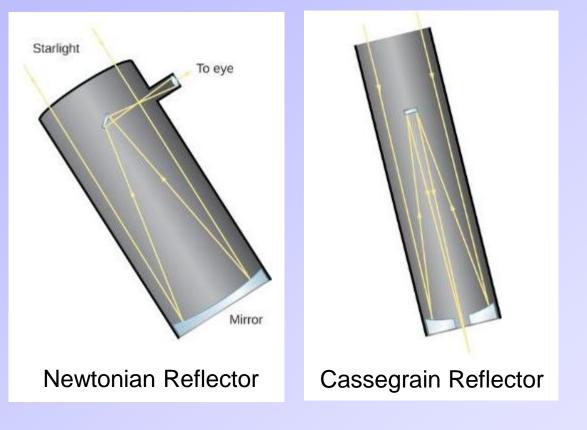
Refracting Telescope

Two or more lenses are used to form an image

Largest refracting telescope in the US: Yerkes Observatory, Williams Bay, Wisconsin (U. of Chicago).

Benefits

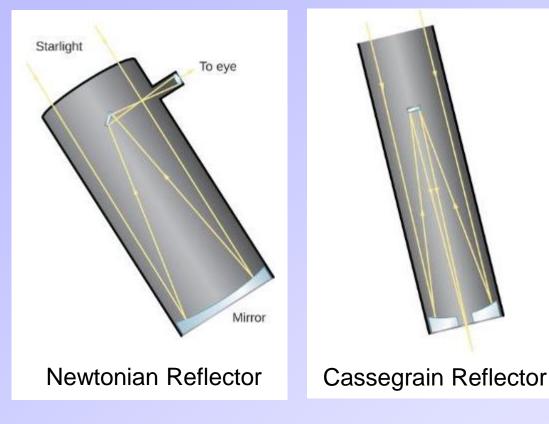
- Simple to construct.
- Rugged, easy to clean.


Drawbacks

- Focal length of lens depends on wavelength (e.g. prism).
 - \rightarrow chromatic aberrations.
 - \rightarrow Achromatic lens reduce this problem.
 - \rightarrow Long focal lengths help.
- Defects in glass distort image.
- Large lenses experience sag in the unsupported middle.
 - \rightarrow Image is distorted.

Reflecting Telescope

A **large curved mirror** collects the light and then focuses it onto a secondary smaller mirror.


- \rightarrow invented by Isaac Newton.
- \rightarrow Parabolic curved mirror is ideal.

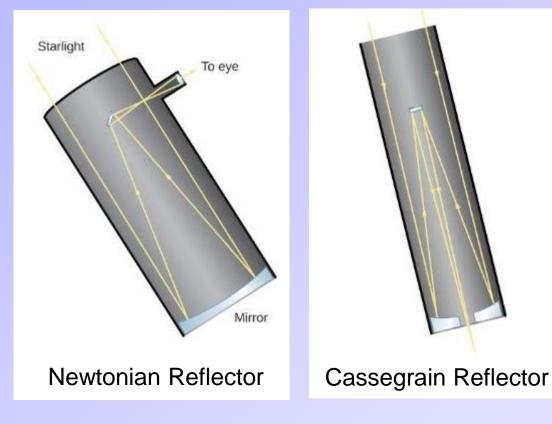
Reflecting Telescope

A **large curved mirror** collects the light and then focuses it onto a secondary smaller mirror.

- \rightarrow invented by Isaac Newton.
- \rightarrow Parabolic curved mirror is ideal.

Benefits

- No chromatic aberrations.
- Glass defects do not matter.
- Large mirror can be supported across its entirety.
 - \rightarrow Sag is less of problem.


Drawbacks

- Open to air: more cleaning.
- Secondary mirror and support structure introduce diffraction effects from their shadows.

Reflecting Telescope

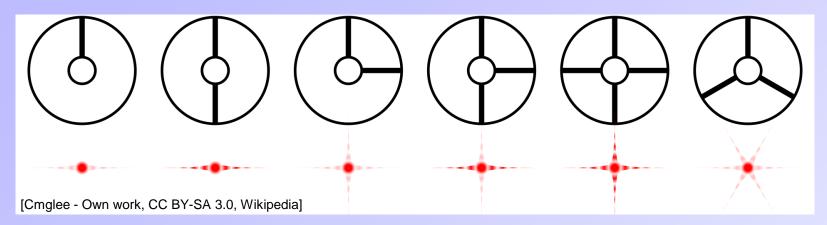
A **large curved mirror** collects the light and then focuses it onto a secondary smaller mirror.

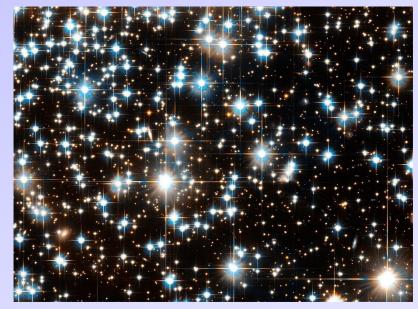
- \rightarrow invented by Isaac Newton.
- \rightarrow Parabolic curved mirror is ideal.

Benefits

- No chromatic aberrations.
- Glass defects do not matter.
- Large mirror can be supported across its entirety.

 \rightarrow Sag is less of problem.


Drawbacks


- Open to air: more cleaning.
- Secondary mirror and support structure introduce diffraction effects from their shadows.

Almost all scientific telescopes are reflectors.

Star Spikes

Shadow from support structure for secondary mirror generates "star spikes".

Star Spikes from a Hubble Space Telescope image (NGC 6397).


[NASA, ESA, and H. Richer (University of British Columbia), Wikipedia]

Single Mirror Telescopes

The Gemini telescopes are some of the largest single mirror telescopes.

- \rightarrow 8.1 m primary mirror.
- \rightarrow 1 m secondary mirror.
- → Locations: Hawaii & Chile

Segmented Telescopes

Problem: A single mirror larger than 8 m will experience significant sag issues.

Solution: Segment the mirror into smaller sections for easier support.

Segmented Telescopes

Problem: A single mirror larger than 8 m will experience significant sag issues.

Solution: Segment the mirror into smaller sections for easier support.

36-segment mirror of the Keck telescope (Hawaii) [by SiOwl - Own work, CC BY 3.0, Wikipedia]

18-segment mirror of the future James Webb Space Telescope.