Today's Topics

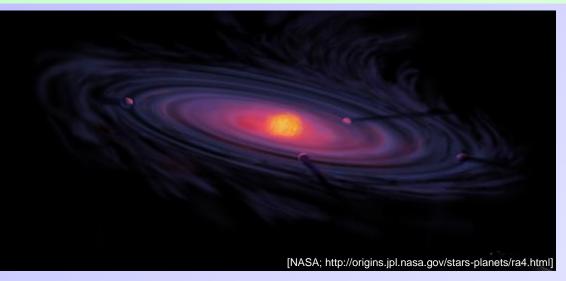
Friday, September 25, 2020 (Week 5, lecture 16) – Chapters 7.

1. Formation of the Solar System

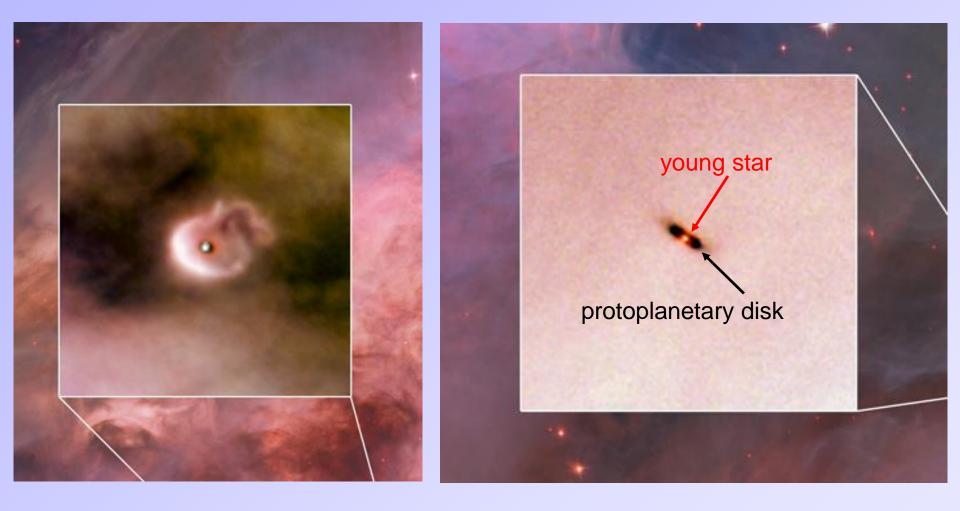
- 2. Age of the Solar System
- 3. Radioactive dating

Formation of the Solar System

Solar nebula hypothesis


- Proposed independently by Pierre Simon Laplace and Immanuel Kant (late 1700s).
- Many other hypotheses have been proposed.
- Nebula hypothesis has become widely accepted since 1970s-80s.
- Hypothesis still has some issues.

Formation of the Solar System


Solar nebula hypothesis

- Proposed independently by Pierre Simon Laplace and Immanuel Kant (late 1700s).
- Many other hypotheses have been proposed.
- Nebula hypothesis has become widely accepted since 1970s-80s.
- Hypothesis still has some issues.

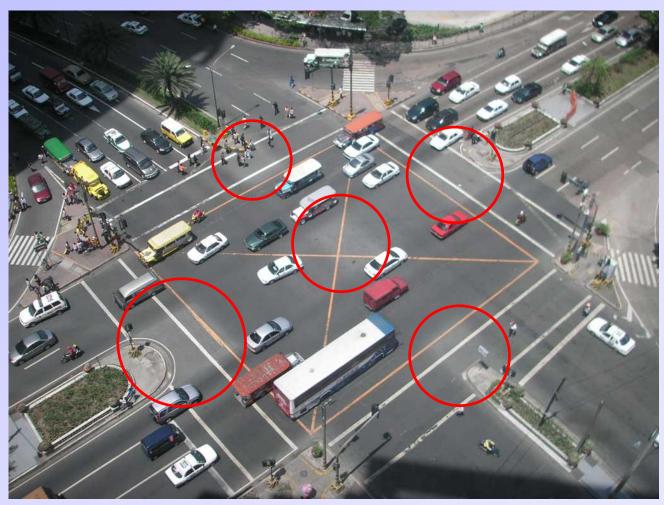
- Solar nebula: A large mass of space gas and dust contracts under gravity.
- Contraction & condensation: The solar nebula contracts, rotates faster, and flattens out: the center gets hot, while the out part heat up and then cool, leading to <u>condensation</u> of gas around the dust particles and the creation of <u>planetesimals</u>.
- Planets: As the planetesimal collide and stick together, they become bigger and evolve into planets. In doing so, they clear out their orbits.
 - → Near circular orbits are more stable, since more eccentric elliptical ones can lead to collisions between planetesimals/planets.
 - \rightarrow Sun turns ON. Radiation pressure pushes remaining gas out of Solar System.

Evidence: Nascent Protoplanetary Systems

Evidence: Protoplanetary Disks – mm wave

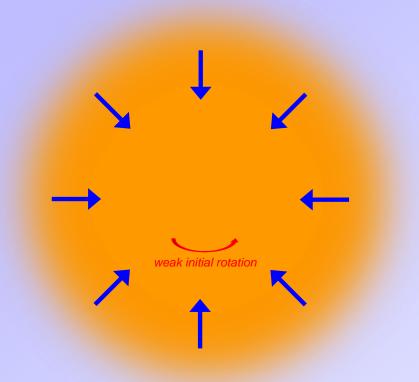
The Protoplanetary Disk of the young star HL Tauri (in Milky Way galaxy, Taurus constellation)

[ALMA (ESO/NAOJ/NRAO); A. Isella; B. Saxton (NRAO/AUI/NSF)]

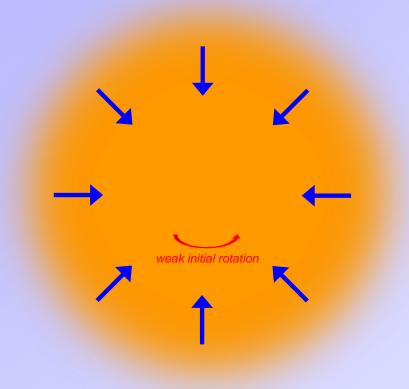

Cloud of gas and dust surrounding the young star HD 163296. (in Milky Way galaxy, Sagittarius constellation)

Short answer: Gas & dust particles in a rotating disk interact with each other the least (i.e. the collisions are minor & cannot eject), so **it is the most stable configuration.**

Short answer: Gas & dust particles in a rotating disk interact with each other the least (i.e. the collisions are minor & cannot eject), so **it is the most stable configuration.**


Physics is similar to the reason that there are "pebble patches" at an intersection:

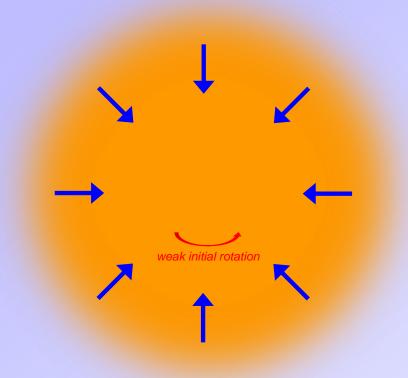
- The pebbles/sand are <u>not</u> attracted to the patch.
- But, if a pebble lands in the patch, then there are few passing cars to kick it out.

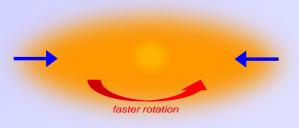

[Source: Wikipedia By Mike Gonzalez CC-BY-SA 3.0 via Wikimedia Commons]


Short answer: Gas & dust particles in a rotating disk interact with each other the least (i.e. the collisions are minor & cannot eject), so **it is the most stable configuration**.

Dust & gas are constantly colliding and rearranging their speed and directions, but the angular momentum is conserved.

Short answer: Gas & dust particles in a rotating disk interact with each other the least (i.e. the collisions are minor & cannot eject), so **it is the most stable configuration**.




As the **nebula contracts** (gravity), the collisions become more frequent, and the rotation speed increases to conserve angular momentum.

Dust & gas are constantly colliding and rearranging their speed and directions, but the angular momentum is conserved.

Short answer: Gas & dust particles in a rotating disk interact with each other the least (i.e. the collisions are minor & cannot eject), so **it is the most stable configuration**.

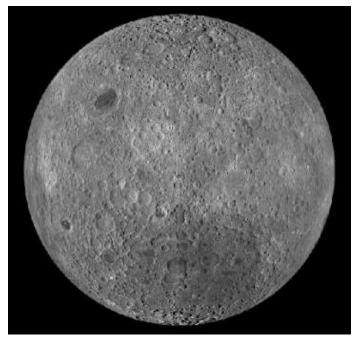
Dust & gas are constantly colliding and rearranging their speed and directions, but the angular momentum is conserved.

As the **nebula contracts** (gravity), the collisions become more frequent, and the rotation speed increases to conserve angular momentum.

Gas and dust that end up travelling with the rotation (and in-plane) will tend to collide less with each other (they are travelling in parallel & in sync), so this configuration is more stable.

How Old is the Solar System ?

- Dating the entire Solar System is hard, but dating individual planets is easier.
- > Earth and Moon are both ~ 4.5 billion years old (4.5×10^9 yrs).


→ Radioactive dating of Earth rocks, Moon rocks, meteorites.

 \rightarrow Crater counting (Moon).

[Wikipedia: H. Raab, own work]

> Solar system age: $\sim 4.5 \times 10^9$ yrs.

[OpenStax: Astronomy]

Radioactive Decay

- Radioactive decay is a random process. You cannot predict when an atom/nucleus will decay.
- If you average over many atoms, the decay process looks smooth.
- During the decay process the atom is converted into another element.

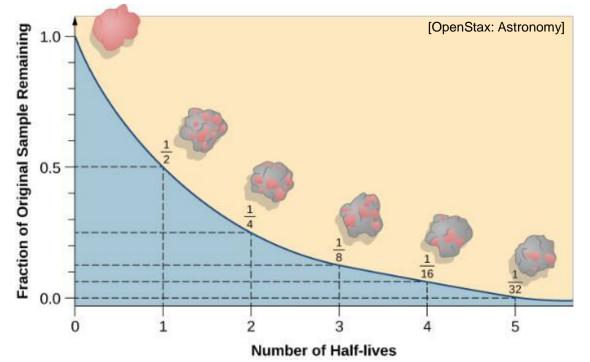
Radioactive Decay

- Radioactive decay is a random process. You cannot predict when an atom/nucleus will decay.
- If you average over many atoms, the decay process looks smooth.
- During the decay process the atom is converted into another element.
- The decay constant is the "half-life": the time it takes for half the sample to decay.

 \rightarrow After 1 half-life, half the sample is left.

 \rightarrow After 2 half-lives, one half of the remainder is left (i.e. one quarter).

 \rightarrow After 3 half-lives, one half that remainder is left (i.e. one eighth).

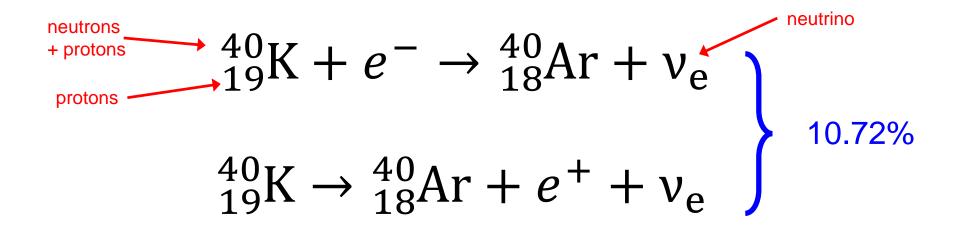

Radioactive Decay

- Radioactive decay is a random process. You cannot predict when an atom/nucleus will decay.
- If you average over many atoms, the decay process looks smooth.
- During the decay process the atom is converted into another element.
- The decay constant is the "half-life": the time it takes for half the sample to decay.

 \rightarrow After 1 half-life, half the sample is left.

 \rightarrow After 2 half-lives, one half of the remainder is left (i.e. one quarter).

 \rightarrow After 3 half-lives, one half that remainder is left (i.e. one eighth).

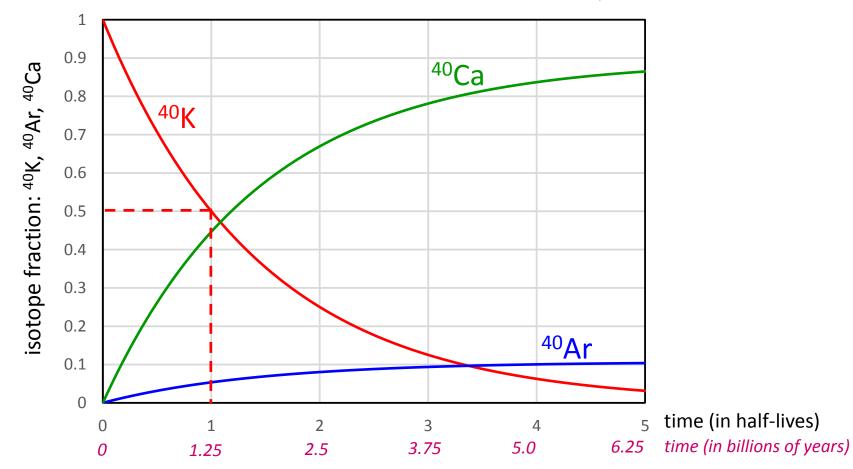

Note: In reality, the decay of radioactive elements in a rock sample would not visibly change the appearance of the rock; the color change shown here is for illustration purposes only.

Radioactive Potassium-40

- > Potassium-40, i.e. ⁴⁰K, has a half-life of $t_{1/2} = 1.25 \times 10^9$ years.
- > The decay has three channels and produces argon-40 and calcium-40.

Radioactive Potassium-40

- > Potassium-40, i.e. ⁴⁰K, has a half-life of $t_{1/2} = 1.25 \times 10^9$ years.
- The decay has three channels and produces argon-40 and calcium-40.


Radioactive Potassium-40

- > Potassium-40, i.e. ⁴⁰K, has a half-life of $t_{1/2} = 1.25 \times 10^9$ years.
- > The decay has three channels and produces argon-40 and calcium-40.

Fraction of remaining
$${}^{40}K = x_{K40} = (\frac{1}{2})^{t/t_{1/2}}$$

Fraction of remaining
$${}^{40}K = x_{K40} = (\frac{1}{2})^{t/t_{1/2}}$$

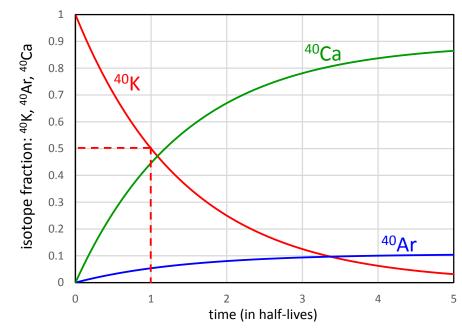
with $t_{1/2} = 1.25 \times 10^9$ years.

Potassium-40: Radiometric Dating

Key Facts

- Argon-40 is a noble gas and does <u>not react</u>.
- In a liquid (molten metal, lava, etc), argon-40 will escape, e.g. bubble out.
- In a solid (rock, meteorite), argon-40 cannot leave.
 - \rightarrow The only source of argon-40 in a solid is potassium-40 decays (mostly true).

Potassium-40: Radiometric Dating


Key Facts

- > Argon-40 is a noble **gas** and does <u>not react</u>.
- In a liquid (molten metal, lava, etc), argon-40 will escape, e.g. bubble out.
- In a solid (rock, meteorite), argon-40 cannot leave.

 \rightarrow The only source of argon-40 in a solid is potassium-40 decays (mostly true).

Radiometric Dating: Basic Idea

- Measure the ratio of potassium-40 to argon-40.
- This ratio gives the age at which the rock/meteorite became a solid.

Radioactive Decay Reaction Used to Date Rocks^[4]

Parent	Daughter	Half-Life (billions of years)
Samarium-147	Neodymium-143	106
Rubidium-87	Strontium-87	48.8
Thorium-232	Lead-208	14.0
Uranium-238	Lead-206	4.47
Potassium-40	Argon-40	1.31 [OpenStax: Astronomy]

Radioactive Decay Reaction Used to Date Rocks^[4]

Parent	Daughter	Half-Life (billions of years)
Samarium-147	Neodymium-143	106
Rubidium-87	Strontium-87	48.8
Thorium-232	Lead-208	14.0
Uranium-238	Lead-206	4.47
Potassium-40	Argon-40	1.31 [OpenStax: Astronomy]

Carbon-14Nitrogen-14 5730 ± 40 years(not useful for astronomy dating, but very useful for archeological dating)