Today's Topics

Friday, October 9, 2020 (Week 7, lecture 22) – Chapters 11, 12.

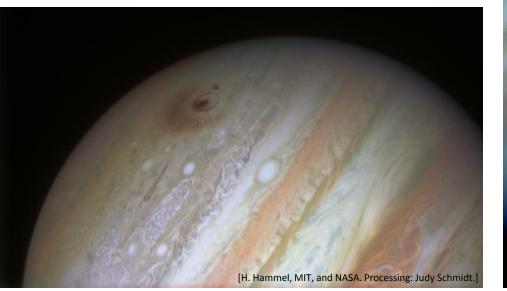
- A. Basic properties
- B. The "cosmic vacuum cleaner"
- C. Energy puzzle
- D. Galilean Moons: an overview
- E. Galilean Moons: the details
- F. Upcoming jovian missions

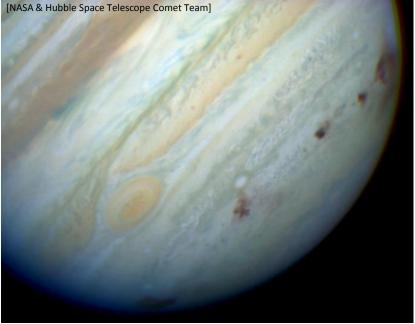
- Largest & heaviest planet in Solar System.
 → M_{Jupiter} ≈ 318 M_{earth}.
 → R_{Jupiter} = 70,000 km ≈ 11 R_{Earth}.
- Orbit demarcates approximate outer range of "frost line."
 → Orbital period = 11.9 years
 - \rightarrow Semimajor axis = 5.20 AU

- Largest & heaviest planet in Solar System.
 → M_{Jupiter} ≈ 318 M_{earth}.
 → R_{Jupiter} = 70,000 km ≈ 11 R_{Earth}.
- Orbit demarcates approximate outer range of "frost line."
 → Orbital period = 11.9 years
 → Semimajor axis = 5.20 AU
- Rotates very quickly: T_{rotation} = 9.9 hrs.
- Largest magnetosphere of all the planets.
- Very rich atmospheric structure.
 → Thought to be due to internal heat.

- Largest & heaviest planet in Solar System.
 → M_{Jupiter} ≈ 318 M_{earth}.
 → R_{Jupiter} = 70,000 km ≈ 11 R_{Earth}.
- Orbit demarcates approximate outer range of "frost line."
 → Orbital period = 11.9 years
 → Semimajor axis = 5.20 AU
- Rotates very quickly: T_{rotation} = 9.9 hrs.
- Largest magnetosphere of all the planets.
- Very rich atmospheric structure.
 → Thought to be due to internal heat.
- 4 large moons and 75 very small moons.
 → Galilean moons: Ganymede, Callisto, Io, and Europa.

Jupiter: "cosmic vacuum cleaner"

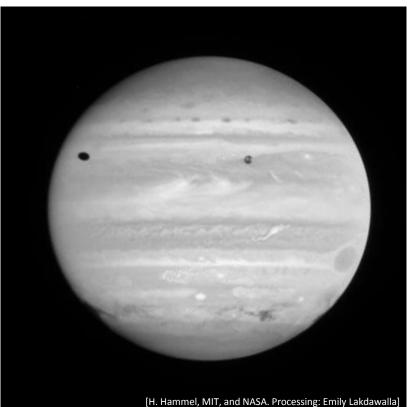

Jupiter attracts and "eats" comets and asteroid.


- \rightarrow Removes small bodies from Solar System.
- \rightarrow Reduces impacts on other planets.

Jupiter: "cosmic vacuum cleaner"

Jupiter attracts and "eats" comets and asteroid.

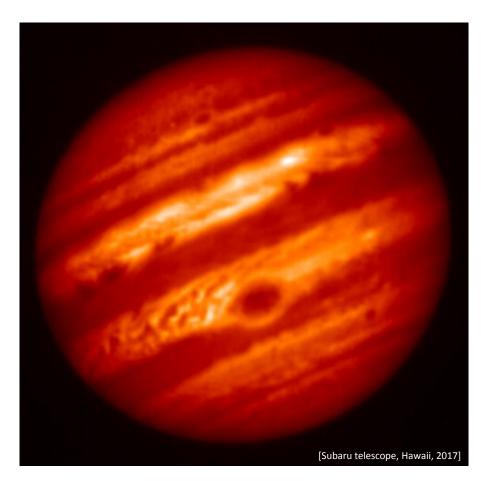
- \rightarrow Removes small bodies from Solar System.
- \rightarrow Reduces impacts on other planets.


Comet Shoemaker-Levy impact on Jupiter in 1994

Jupiter: "cosmic vacuum cleaner"

Jupiter attracts and "eats" comets and asteroid.

- \rightarrow Removes small bodies from Solar System.
- \rightarrow Reduces impacts on other planets.


Comet Shoemaker-Levy impact on Jupiter in 1994

Jupiter <u>emits</u> more energy than it <u>absorbs</u>

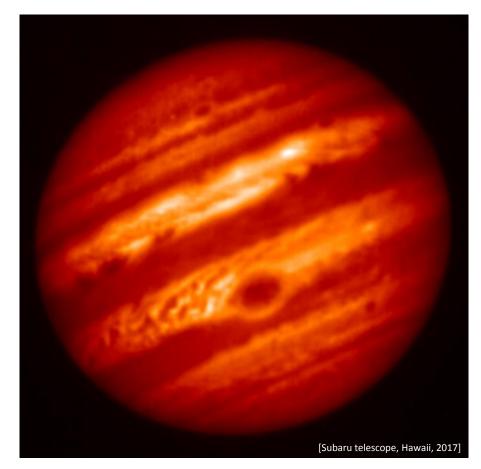
- Jupiter emits twice the power that it receives from the Sun!
- Explanation 1: Left over primordial heat is radiated by planet.
- Explanation 2: Jupiter may be gradually contracting.

 \rightarrow Gravitational potential energy is converted to kinetic thermal energy.

Jupiter's core is estimated to be at 36,000 K.

Jupiter in the mid-infrared (λ = 8.8 μ m)

Jupiter <u>emits</u> more energy than it <u>absorbs</u>

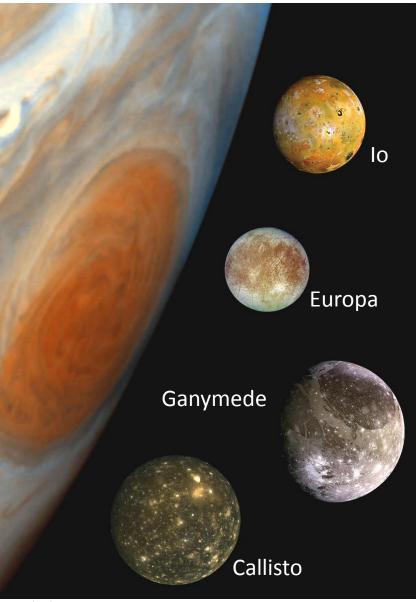

- Jupiter emits twice the power that it receives from the Sun!
- Explanation 1: Left over primordial heat is radiated by planet.
- Explanation 2: Jupiter may be gradually contracting.

 \rightarrow Gravitational potential energy is converted to kinetic thermal energy.

- Jupiter's core is estimated to be at 36,000 K.
- Saturn also emits more power than it receives.

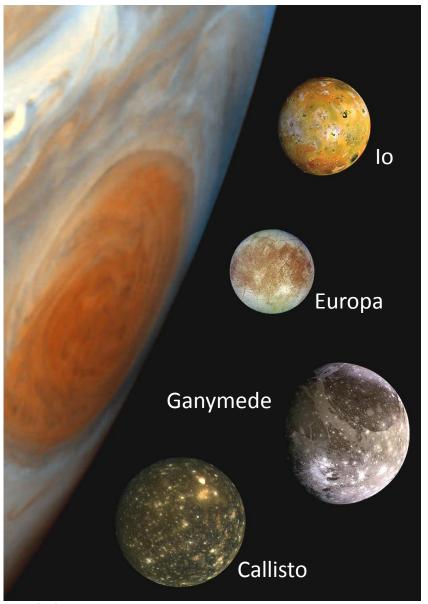
→ Planet is still differentiating (<u>helium</u> "rain" falling into Saturn) and converting gravitational energy to thermal energy.

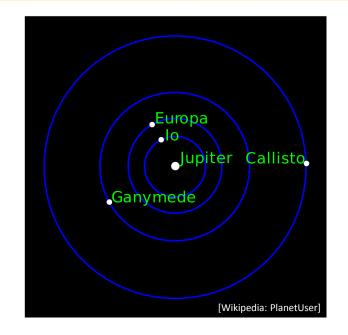
Neptune also emits more power than it receives: planet is still contracting.



Jupiter in the mid-infrared (λ = 8.8 μ m)

Jupiter's Galilean Moons




Jupiter's Galilean Moons

Comparable in size to the Moon.

Jupiter's Galilean Moons

- Comparable in size to the Moon.
- Fairly circular orbits.
- Inner three moons are in a stable (self-correcting) 4:2:1 resonance.

→ For each Ganymede orbit, Europa completes 2 orbits, and Io makes for 4 orbits.

Name	Diameter (km)	Mass (Earth's Moon = 1)	Density (g/cm ³)
Moon	3476	1.0	3.3
Callisto	4820	1.5	1.8
Ganymede	5270	2.0	1.9
Europa	3130	0.7	3.0
Ιο	3640	1.2	3.5

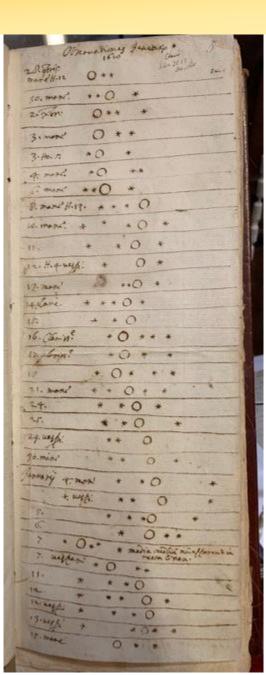
Name	Diameter (km)	Mass (Earth's Moon = 1)	Density (g/cm³)
Moon	3476	1.0	3.3
Callisto	4820	1.5	1.8
Ganymede	5270	2.0	1.9
Europa	3130	0.7 1.2 rockier	3.0
Ιο	3640	1.2 r^{octu}	3.5

Name	Diameter (km)	Mass (Earth's Moon = 1)	Density (g/cm³)
Moon	3476	1.0	3.3
Callisto	4820	1.5	1.8
Ganymede	5270	2.0 icier	1.9
Europa	3130	0.7 1.2 rockier	3.0
Ιο	3640	1.2 r^{octu}	3.5

Name	Diameter (km)	Mass (Earth's Moon = 1)	Density (g/cm³)
Moon	3476	1.0	3.3
Callisto	4820	1.5	1.8
Ganymede	5270	2.0 icier	1.9
Europa	3130	0.7 1.2 rockier	3.0
Ιο	3640	1.2 1.2	3.5

Formation of Jupiter and its moons

- Similar to a **mini solar nebula**, except Jupiter never became a star.
- > Outer moons are icier, inner moons are rockier.


Historical Importance

Galileo discovered the 4 moons in 1609-1610 with his 20x telescope.

 \rightarrow Communicated the discovery to Kepler.

 \rightarrow Confirmation that not all celestial bodies circle the Earth or Sun.

 \rightarrow Confirmation of the heliocentric view.

Historical Importance

Galileo discovered the 4 moons in 1609-1610 with his 20x telescope.

 \rightarrow Communicated the discovery to Kepler.

 \rightarrow Confirmation that not all celestial bodies circle the Earth or Sun.

 \rightarrow Confirmation of the heliocentric view.

Cassini (1625-1712) measured the periods & eclipses of the 4 moons very precisely.

- \rightarrow Development of a celestial clock.
- → Solution to the "longitude problem."
 →Substantial improvement to measurements of distances on Earth.
 →Improved maps of Europe.
- → This "longitude problem" solution spurred the development of high accuracy mechanical clocks.

Callisto & Ganymede

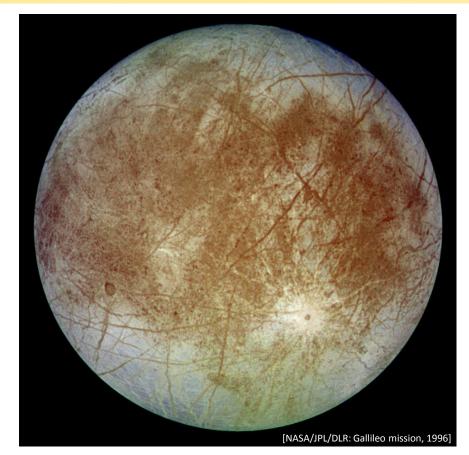
Callisto

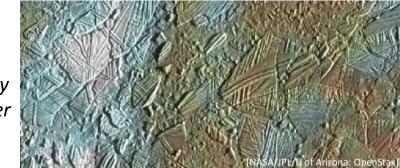
- Tidal locking: same side always faces Jupiter.
- <u>Not</u> fully <u>differentiated</u>: rocks & ices mix.
- Geologically inactive (ice does not "flow"). (when very cold)

Callisto & Ganymede

Callisto

- Tidal locking: same side always faces Jupiter.
- <u>Not</u> fully <u>differentiated</u>: rocks & ices mix.
- Geologically inactive (ice does not "flow"). (when very cold)

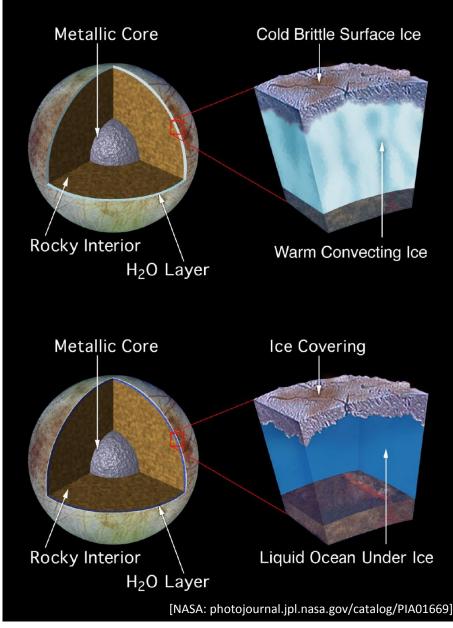



Ganymede

- Largest moon in Solar system.
- Tidal locking: same side always faces Jupiter.
- Differentiated interior with molten core.
 → Tidal heating, geologically active, possible liquid H₂O inside, magnetic field.

Europa

- Tidal locking: same side always faces Jupiter.
- Tidal heating: gravity gradients from Jupiter (and also Io, and Ganymede) periodically deform moon and heat its interior.
 → Tidal forces are about 1000 stronger
 - than in Earth-Moon system.
- Surface is geologically young (very few craters).
- Composition is a rocky core with a large mantle and crust of water (ice, maybe liquid).
- Water cryogeisers detected.

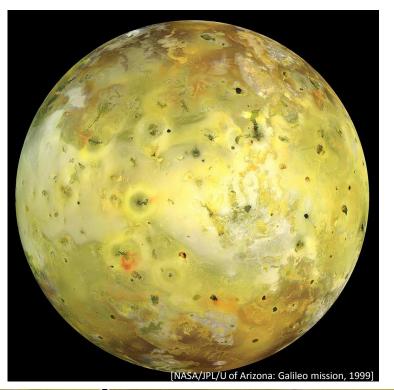

Geologically active water ice surface

Europa

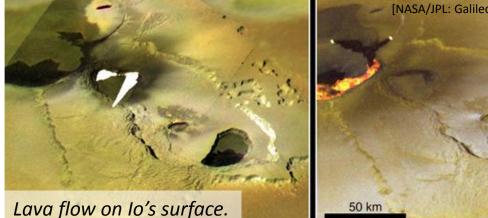
- Tidal locking: same side always faces Jupiter.
- Tidal heating: gravity gradients from Jupiter (and also Io, and Ganymede) periodically deform moon and heat its interior.
 →Tidal forces are about 1000 stronger

than in Earth-Moon system.

- Surface is geologically young (very few craters).
- Composition is a rocky core with a large mantle and crust of water (ice, maybe liquid).
- Water cryogeisers detected.
- Europa may have liquid water ocean under its icy crust.

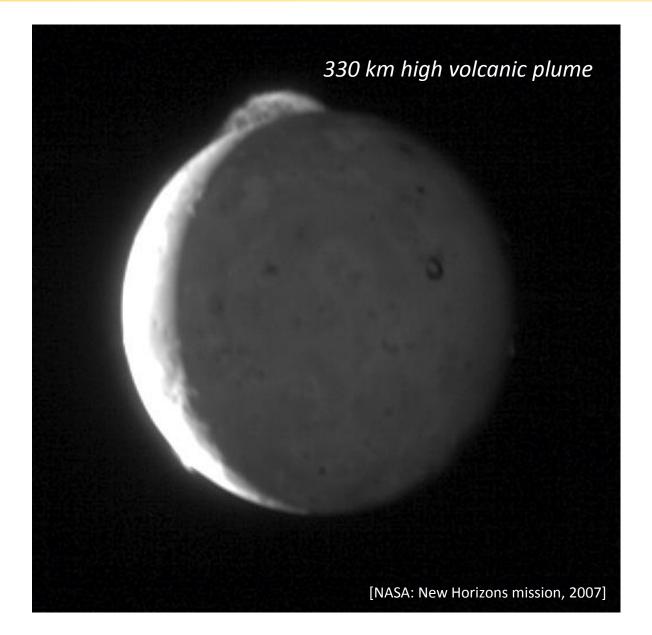

lo

- Tidal locking: same side always faces Jupiter.
- Extreme tidal heating: gravity gradient primarily from Jupiter periodically deforms moon and heat its interior due to orbital eccentricity.
 → Tidal bulge is several kilometers.
- Most geologically active body in Solar System.



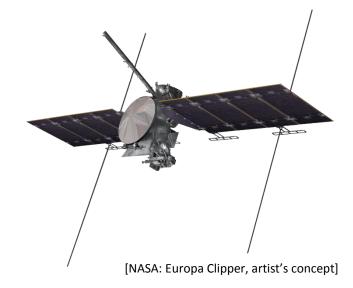
0

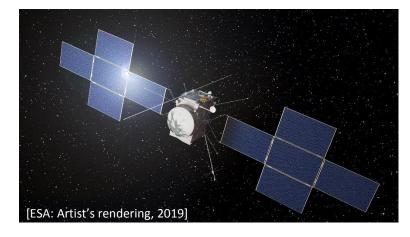
- Tidal locking: same side always faces Jupiter.
- **Extreme tidal heating:** gravity gradient primarily from Jupiter periodically deforms moon and heat its interior due to orbital eccentricity. \rightarrow Tidal bulge is several kilometers.
- Most geologically active body in Solar System
- More than 400 active volcanoes.
- Composition is silicate rock with an **iron-sulfur** liquid core. Crust has a lot sulfur.



Volcanic plumes feed a plasma torus in Jupiter's magnetosphere.

Io: Active Volcano


Future Missions to Galilean Moons


Europa Clipper

- Planned launch 2025.
- Orbits of Jupiter with 45 Europa flybys.
- Search for sub-crust water ocean.
- Study composition & chemistry.
- Find a suitable future **lander location**.

JUICE: JUpiter ICy moons Explorer

- Planned launch 2022.
- Enter Ganymede orbit in 2032.
- Study Ganymede.
- Also study Europa and Callisto.

