Today's Topics

Friday, April 11, 2025 (Week 10, Lecture 27) – Chapter 25.

A. Our Milky Way Galaxy

- B. Overall structure
- C. Formation of the galaxy

Our Milky Way Galaxy – by eye

Our Milky Way Galaxy – by telescope

Our Milky Way galaxy has 100-400 billion stars

Milky Way galaxy: 360° view.

Milky Way: Full EM spectrum

[NASA, Goddard Space Flight Center (2018)]

Milky Way: Photons vs Neutrinos

[IceCube collaboration, 2023]

Mapping the Milky Way

By measuring the <u>distance</u> to many, many stars and interstellar gas/dust clouds, one can construct a map of our galaxy:

- William Herschel's map (18th century).
- Harlow Shapley's map (20th century).
- Current maps show a spiral galaxy structure.

Herschel's Milky Way (18th Century)

William Herschel (1738-1822) and **Caroline Herschel** (1750-1848) measured the distribution of stars in various directions of the sky to determine the shape of the Milky Way galaxy (i.e., "universe").

Milky Way Structure (present day)

Local Region

Perseus

Rosetta Orion

- Our solar system is in the Orion spur.
- Between the Perseus arm and the Sagittarius arm.

Cygnus X: Star forming region.

W51: large star *"factory"*.

Basic Structure

[OpenStax, Astronomy 2e (2025)]

Milky Way: Full EM spectrum

Broad Structure

Bulge region

- Stars have more random and out-of-plane orbits.
- Includes central bar.

Thin & Thick Disk region

- Star orbits are more circular and in-plane.
- Includes the spiral arms.

Halo region

- Very old stars with out-of-plane and random orbits.

- Low density of matter.
- Includes <u>dwarf galaxies</u>.
- Includes globular clusters.
- Includes dark matter.
- Extends out to \sim 150-200 kly.

Broad Structure

Characteristics of the Milky Way Galaxy

Property	Thin Disk	Thick Disk	Stellar Halo (Excludes Dark Matter)
Stellar mass	$4 \times 10^{10} M_{Sun}$	A few percent of the thin disk mass	10 ¹⁰ <i>M</i> _{Sun}
Luminosity	$3 \times 10^{10} L_{Sun}$	A few percent of the thin disk luminosity	$8 \times 10^8 L_{Sun}$
Typical age of stars	1 million to 10 billion years	11 billion years	13 billion years
Heavier-element abundance	High	Intermediate	Very low
Rotation	High	Intermediate	Very low

[OpenStax, Astronomy 2e (2025)]

Globular Clusters

Globular clusters are essentially "micro" galaxies.

- Many old stars.
- Not much gas or dust.
- Spheroidal shape.
- Stars have relatively random orbits (no spiral arms).
- 150-ish globular clusters orbit the Milky Way in the halo region.

Satellite Dwarf Galaxies

LMC = Large Magellanic Cloud SMC = Small Magellanic Cloud

20-60 dwarf galaxies in vicinity of Milky Way

Satellite Dwarf Galaxies

- Not all dwarf galaxies are in orbit around the Milky Way.
- The Sagittarius Dwarf is being actively absorbed by the Milky Way.
- The LMC and SMC may or may not be in orbit around Milky Way.

Orbits: Disk vs Halo

Spiral Arms

The matter in the spiral arms orbit around the center-of-mass of the galaxy.
 → Kepler's laws determine the orbits (or Newton's version).

Spiral Arms

The matter in the spiral arms orbit around the center-of-mass of the galaxy.
 → Kepler's laws determine the orbits (or Newton's version).

Spiral Arms

- The matter in the spiral arms orbit around the center-of-mass of the galaxy.
 → Kepler's laws determine the orbits (or Newton's version).
- The spiral arms of the galaxy do NOT rotate rigidly (i.e., not like a frisbee).
- The spiral arm shape evolves in time.
- The spirals do not continuous "wind up" forever.

 → Gravitational interaction between the arms partially stabilizes them.

Sun's Orbital Speed

[OpenStax, Astronomy 2e (2025)]

PollEv Quiz: PollEv.com/sethaubin

Orbital Velocities

Distance from Center of Galaxy (kpc)

- The orbital speed of carbon monoxide (CO) and hydrogen (H) gas at different distances from the center of the Milky Way Galaxy (red).
- The blue curve shows what the rotation curve would look like if all the matter in the Galaxy were located inside a radius of 30,000 light-years. *Instead of going down, the speed of gas clouds farther out remains high, indicating a great deal of mass beyond the Sun's orbit...* Indicator of **dark matter**.
- The horizontal axis shows the distance from the galactic center in kiloparsecs (where a kiloparsec equals 3,260 light-years).

- An initial cloud of gas and dust collapses under its own gravity.
- As it collapses, its initial angular momentum is conserved, and the cloud rotates faster.

- The globular clusters were formed prior to collapse or were formed elsewhere.
- As it collapses, stars begin to form in regions of higher density.

 Interactions between the gas/dust and stars pulls the cloud into a disk (angular momentum is conserved).

 The densest region centered on the center of mass has the most stars, and bulge emerges with somewhat random orbits (out-of-plane).