Today's Topics

Friday, April 18, 2025 (Week 11, Lecture 30) – Chapter 25, 26.

- 1. Stellar population types
- 2. Formation of the galaxy
- 3. Barred galaxies
- 4. Distance Ladder

Problem Set #10 is due on ExpertTA on Friday, April 25, 2025, by 9:00 AM

Stellar Population Types

Studies of <u>Milky Way</u> & <u>Andromeda</u> reveal **two** stellar population types.

Stellar population types provide clues to galactic formation process

Stellar Population Types

Studies of <u>Milky Way</u> & <u>Andromeda</u> reveal **two** stellar population types.

Population I stars

- In the disk, orbiting the galactic center. Bright supergiants and O and B spectral class.
- Typically members of young, open (100-1000 stars) clusters. Wide range of ages.
- They are composed of relatively large fractions of heavy elements $\rightarrow 1.4\%$ of the mass is poither H per He = High metallicity
 - \rightarrow 1-4% of the mass is neither H nor He = High **metallicity**
- Accompanied by molecular clouds near these stars.

Stellar Population Types

Studies of <u>Milky Way</u> & <u>Andromeda</u> reveal **two** stellar population types.

Population I stars

- In the disk, orbiting the galactic center. Bright supergiants and O and B spectral class.
- Typically members of young, open (100-1000 stars) clusters. Wide range of ages.
- They are composed of relatively large fractions of heavy elements
 → 1-4% of the mass is neither H nor He = High metallicity
 - Accompanied by molecular clouds near these stars.

Population II stars

- Mainly in the halo, follow elliptical orbits.
- Typically, they are very old (11-13 billion years).
- Almost entirely H or He. Not surprising heavy elements are produced in stars.
 - \rightarrow When these stars were formed long ago, there was only H and He in the interstellar gas.

Stellar population types provide clues to galactic formation process

Milky Way Formation-Evolution

Rough timeline of the formation of the Milky Way

- Proto-galaxy: Initial clump of material (possibly two clumps), no spiral structure.
 → Roughly 12-13 billion years ago.
- 2. 0-2 billion years: central bulge develops, fuzzy spiral arms develop.
- 3. 3-4 billion years: Two well-defined spiral arms form
- 4. 8+ billion years: multiple spiral arms
- 5. More recently: central bar develops.

Milky Way Formation-Evolution

Rough timeline of the formation of the Milky Way

- Proto-galaxy: Initial clump of material (possibly two clumps), no spiral structure.
 → Roughly 12-13 billion years ago.
- 2. 0-2 billion years: central bulge develops, fuzzy spiral arms develop.
- 3. 3-4 billion years: Two well-defined spiral arms form
- 4. 8+ billion years: multiple spiral arms
- 5. More recently: central bar develops.

Additional facts:

- It is likely that in the early stages the Milky Way merged with other large galaxies.
- At present, the Milky Way is accreting material from nearby dwarf galaxies.
 → e.g. Large and Small Magellanic Clouds, Sagittarius Dwarf.
- The Milky Way is expected to **merge** with Andromeda (M31) in about 4 billion years.

- An initial cloud of gas and dust collapses under its own gravity.
- As it collapses, its initial angular momentum is conserved, and the cloud rotates faster.

- The globular clusters were formed prior to collapse or were formed elsewhere.
- As it collapses, stars begin to form in regions of higher density.

 Interactions between the gas/dust and stars pulls the cloud into a disk (angular momentum is conserved).

 The densest region centered on the center of mass has the most stars, and bulge emerges with somewhat random orbits (out-of-plane).

Dwarf Galaxy Merger-Accretion

- Streams in the Galactic Halo: When a small galaxy is swallowed by the Milky Way, its member stars are stripped away and form streams of stars in the galactic halo.
- This image is based on calculations of what some of these tidal streams might look like if the Milky Way swallowed 50 dwarf galaxies over the past 10 billion years.

Dwarf Galaxy Merger-Accretion

[Dark Energy Survey/DOE/FNAL/DECam/CTIO/NOIRLab/NSF/AURAImage]

[Jschulman555 – Wikipedia (2025)]

Unbarred Spiral Galaxies (tend to be younger)

The Distance Ladder

How do we measure **distance** to stars and galaxies?

The Distance Ladder

How do we measure **distance** to stars and galaxies?

- 0. Solar system distances: Radar
- 1. 4 to 1000 light years: Parallax
- 2. to 300,000 light years: <u>RR Lyrae</u> variable stars
- 3. to 1 million light years: H-R diagram comparing same types of stars
- 4. to 60 million light years: <u>Cepheid</u> variable stars
- 5. to 300 million light years: Tully-Fisher law (for spiral galaxies)
- 6. to 11,000 million light years: Type 1A Supernovae

The Distance Ladder

How do we measure **distance** to stars and galaxies?

- 0. Solar system distances: Radar
- 1. 4 to 1000 light years: Parallax
- 2. to 300,000 light years: <u>RR Lyrae</u> variable stars
- 3. to 1 million light years: H-R diagram comparing same types of stars
- 4. to 60 million light years: <u>Cepheid</u> variable stars
- 5. to 300 million light years: Tully-Fisher law (for spiral galaxies)
- 6. to 11,000 million light years: Type 1A Supernovae

Main idea: if we can find some sort of "standard candle", *i.e.*, a star where we know (from some other property) what its Luminosity is, then its Apparent Brightness tells us its Distance.

PollEv Quiz: PollEv.com/sethaubin

Cepheid Variable Stars – a standard candle

Cepheid Light Curve

Here the brightness of the star changes periodically with a period of about 6 days.

Cepheid Variable Stars – a standard candle

by L. Kay, S. Palen, and G. Blumenthal (Norton, 2016)]

Period-Luminosity Relation for Cepheid Variables

- The time the star takes to go through a cycle of luminosity changes is related to the average luminosity of the star.
- RR Lyrae stars have a comparable behavior.

Type 1a Supernovae

Type 1a Supernovae – a standard candle

Type 1a Supernovae – a standard candle

