Today's Topics

Wednesday, April 23, 2025 (Week 12, Lecture 32) – Chapter 26.

- 1. Red Shift
- 2. Galaxy types

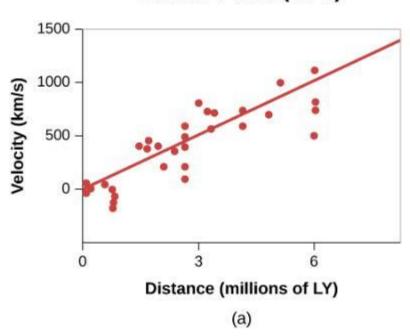
Problem Set #10 is due on ExpertTA on Friday, April 25, 2025, by 9:00 AM

Interlude 2 essay is due on <u>Gradescope</u> on Monday, April 28, 2025 by 9:00 AM

The Distance Ladder

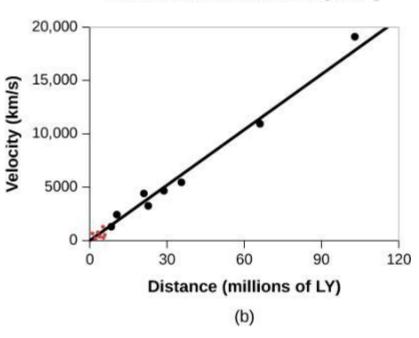
How do we measure **distance** to stars and galaxies?

- 0. Solar system distances: Radar
- 1. 4 to 1000 light years: Parallax
- 2. to 300,000 light years: RR Lyrae variable stars
- 3. to 1 million light years: H-R diagram comparing same types of stars
- 4. to 60 million light years: Cepheid variable stars
- 5. to 300 million light years: Tully-Fisher law (for spiral galaxies)
- 6. to 11,000 million light years: Type 1A Supernovae
- 7. 30 to 13,000 million light years: Red shift and Hubble's Law*


 (* caveat)

Main idea: if we can find some sort of "standard candle", *i.e.*, a star where we know (from some other property) what its Luminosity is, then its Apparent Brightness tells us its Distance.

PollEv Quiz: PollEv.com/sethaubin


Red Shifts & Hubble's Law

Hubble's Data (1929)

Hubble's Law: $V = H \times d$

Hubble and Humason (1931)

V = recession velocity

D = distance from Earth

H = Hubble constant [modern value]

= 22 (km/s)/million-light-years

= slope of the above lines

Red Shift

When celestial objects are moving rapidly, astronomers often quantify their **speed** v in terms of their **redshift** "z" that they measure **spectroscopically**:

$$z=rac{\Delta\lambda}{\lambda}$$
 = redshift with: $\lambda=$ wavelength $\Delta\lambda=$ shift in wavelength

Red Shift

When celestial objects are moving rapidly, astronomers often quantify their **speed** v in terms of their **redshift** "z" that they measure **spectroscopically**:

$$z=rac{\Delta\lambda}{\lambda}$$
 = redshift with: $\lambda=$ wavelength $\Delta\lambda=$ shift in wavelength

If the velocity v is non-relativistic (v << c), then

$$z \approx \frac{v}{c}$$

If the velocity v is relativistic ($v \leq c$), then

$$\frac{v}{c} = \frac{(z+1)^2 - 1}{(z+1)^2 + 1}$$

Due to Hubble's law, astronomers often use the **redshift** z as a proxy for **distance**.

Edwin Hubble

Education background

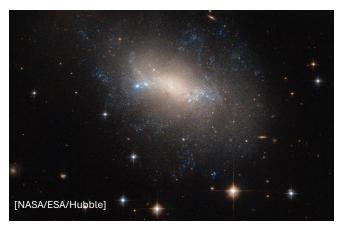
- B. Sc. at U. of Chicago (math, astronomy, philosophy).

 → Gifted athlete: Basketball and track teams.
- Rhodes Scholar (Oxford U., studied law).
- Taught high school (Spanish, Physics, and Math).
- PhD in Astronomy (U. of Chicago).
- ... served in WW1.

Discoveries

- Proved that the Milky Way is one of many galaxies.
 - → Showed that Andromeda (M31)is outside of Milky Way.
- Studied many galaxies and classified them.
 - → Spirals, ellipticals, and irregulars.
- Expansion of the universe.
 - → Hubble's law (or Hubble-Lemaitre law).
 - \rightarrow Hubble did not fully believe that the universe is expanding.

Edwin Hubble, 1889-1953


Hubble's Galaxy Classification

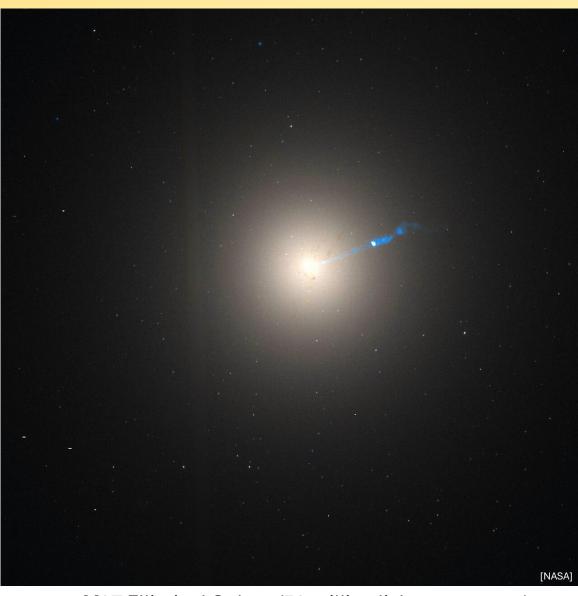
Three broad classes of galaxies:

- Spiral galaxies
- Elliptical galaxies
- Irregular galaxies

Size (mass and width)

- Spirals are medium size to large.
- Ellipticals can be very large.
- Irregulars tend to be smaller.

NGC 2337 Irregular Galaxy


UGC 12158 Spiral Galaxy

IC 2006 Elliptical Galaxy

Elliptical Galaxies

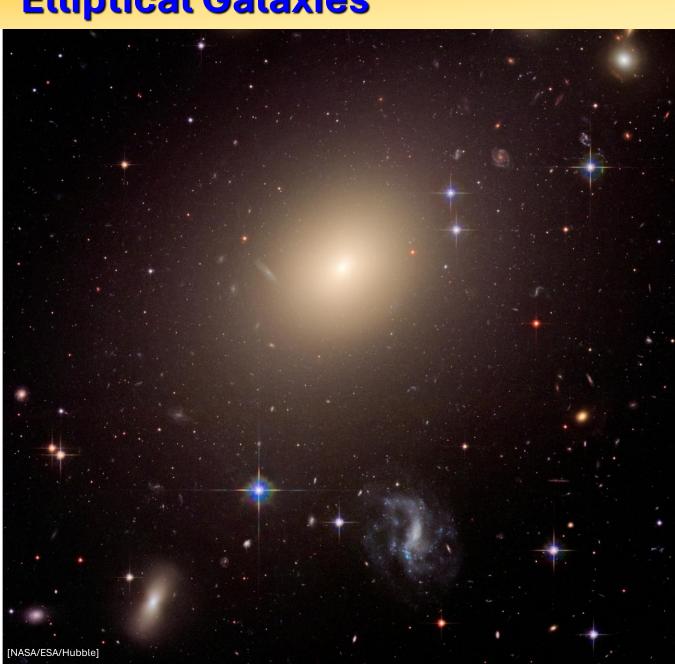
- Roughly as common as spiral galaxies.
- Very little internal structure.
- Ellipsoidal shape.
- Size range: small to very large.
 - \rightarrow largest galaxies are elliptical.
- Most stars are very old.
- Very little gas and dust.
- Star orbits are disorganized and random.
 - → Ellipticals are similar to the central bulge of a spiral galaxy.
- Mass often determined from gravitational lensing.

M87 Elliptical Galaxy (53 million light years away) (diameter=130,000 light years)

Elliptical Galaxies

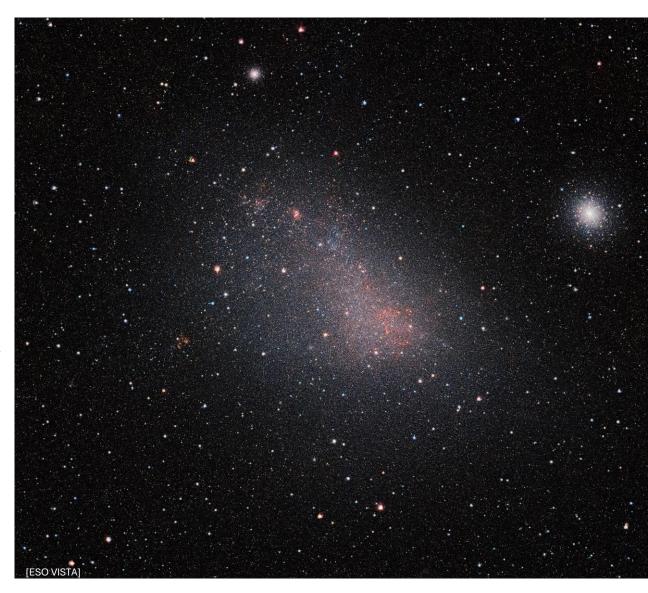
Giant elliptical galaxy ESO 325-G004.

Distance


430-650 million light years

Diameter

400,000-500,000 light years


Mass

140 billion solar masses

Irregular Galaxies

- No defined shape.
- Tend to be smaller.
- Lots of gas; dust varies.
- Both old and young stars.

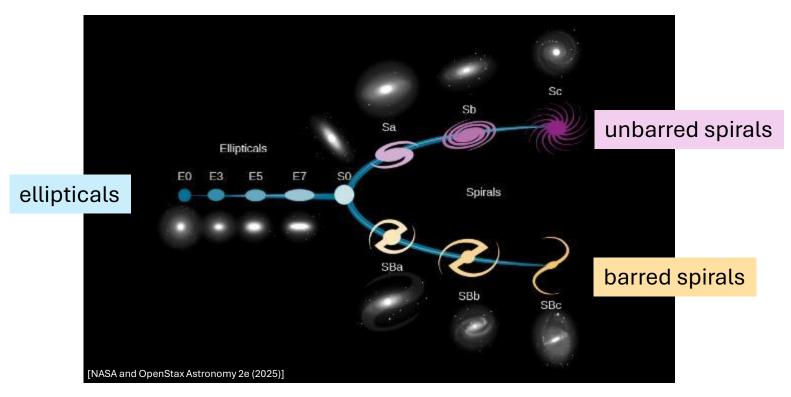
Small Magellanic Cloud (diameter=19,000 light years)

Properties of Galaxy Classes

Characteristics of the Different Types of Galaxies

Characteristic	Spirals	Ellipticals	Irregulars
Mass (M _{Sun})	10 ⁹ to 10 ¹²	10 ⁵ to 10 ¹³	10 ⁸ to 10 ¹¹
Diameter (thousands of light-years)	15 to 150	3 to >700	3 to 30
Luminosity (<i>L</i> _{Sun})	10 ⁸ to 10 ¹¹	10 ⁶ to 10 ¹¹	10 ⁷ to 2 × 10 ⁹
Populations of stars	Old and young	Old	Old and young
Interstellar matter	Gas and dust	Almost no dust; little gas	Much gas; some have little dust, some much dust

Mass-to-Light Ratio


Mass in units of M_{sun} Luminosity in units of L_{sun}

Mass-to-Light ratio =
$$\frac{Mass}{Luminosity}$$

Characteristic	Spirals	Ellipticals	Irregulars
Mass-to-light ratio in the visible part	2 to 10	10 to 20	1 to 10
Mass-to-light ratio for total galaxy	100	100	?

Includes dark matter

Hubble's Classification Scheme

Edwin Hubble's original classification of galaxies.

IMPORTANT: This "tuning fork" diagram does NOT represent galaxy evolution.

(though astronomers did try ... sort of like the H-R diagram)

PollEv Quiz: PollEv.com/sethaubin