Midterm #2 Results

Histogram of Midterm #2 Scores

Average score = 67.3 / 100

Median = 72.5/100

High score = 95/100

	Problem #1	Problem #2	Problem #3	Problem #4
average =	19.0 /25	14.6 /25	16.8 /25	16.9 /25

Today's Topics

Wednesday, April 30, 2025 (Week 13, lecture 35) – Chapter 29.

1. Expanding universe.

2. Critical density.

3. Accelerating universe.

Final Exam is on Thursday, May 8 at 9:00 am – noon, in this room

Expansion of Universe: Space is stretching

Reminder (from Lecture 31)

- From Hubble's law, we saw that the universe must be expanding.
- Over time, galaxy clusters will get further and further apart.
- One view is that the increasing distance is due to the different velocities of the galaxy clusters.
- Another view is that space is actually expanding, i.e. stretching out.

The **redshift of light** can be thought of as due to the expansion of space (instead of the receding velocity of the emitter).

- → The light waves get stretched out as space stretches out.
- → Over time, the wavelength gets longer and longer as space stretches.

The **redshift of light** can be thought of as due to the expansion of space (instead of the receding velocity of the emitter).

- → The light waves get stretched out as space stretches out.
- → Over time, the wavelength gets longer and longer as space stretches.

Question 1: Will a house slowly get bigger over time, due to the expansion of space?

The **redshift of light** can be thought of as due to the expansion of space (instead of the receding velocity of the emitter).

- → The light waves get stretched out as space stretches out.
- → Over time, the wavelength gets longer and longer as space stretches.

Question 1: Will a house slowly get bigger over time, due to the expansion of space?

Answer 1: No, the electromagnetic interaction (which binds matter together chemically) is strong enough to prevent the house from expanding.

The **redshift of light** can be thought of as due to the expansion of space (instead of the receding velocity of the emitter).

- → The light waves get stretched out as space stretches out.
- → Over time, the wavelength gets longer and longer as space stretches.

Question 1: Will a house slowly get bigger over time, due to the expansion of space?

Answer 1: No, the electromagnetic interaction (which binds matter together chemically) is strong enough to prevent the house from expanding.

Question 2: Will a galaxy get bigger over time, due to the expansion of space?

The **redshift of light** can be thought of as due to the expansion of space (instead of the receding velocity of the emitter).

- → The light waves get stretched out as space stretches out.
- → Over time, the wavelength gets longer and longer as space stretches.

Question 1: Will a house slowly get bigger over time, due to the expansion of space.

Answer 1: No, the electromagnetic interaction (which binds matter together chemically) is strong enough to prevent your house from expanding.

Question 2: Will a galaxy get bigger over time, due to the expansion of space?

Answer 2: No, the gravitational attraction between nearby stars is strong enough to prevent the galaxy from expanding.

Closed universe?

Question 3: Will a galaxy supercluster get bigger over time, due to the expansion of space?

Answer 3: No, the gravitational attraction between nearby galaxies (dark matter included) is still strong enough to prevent the supercluster from expanding.

Closed universe?

Question 3: Will a galaxy supercluster get bigger over time, due to the expansion of space?

Answer 3: No, the gravitational attraction between nearby galaxies (dark matter included) is still strong enough to prevent the supercluster from expanding.

Question 4: Could the gravity of the whole universe be enough to prevent its expansion?

... Well, the universe is expanding, so it seems like the answer is no.

Closed universe?

Question 3: Will a galaxy supercluster get bigger over time, due to the expansion of space?

Answer 3: No, the gravitational attraction between nearby galaxies (dark matter included) is still strong enough to prevent the supercluster from expanding.

Question 4: Could the gravity of the whole universe be enough to prevent its expansion?

... Well, the universe is expanding, so it seems like the answer is no.

Question 4 -- **rephrased:** Could the gravity of the whole universe be enough to slow down and stop the expansion of the universe?

Answer 4: If the universe has enough matter in it (including dark matter), then this gravitational self-attraction could slow down and stop the expansion of the universe ... and possibly lead to its contraction, i.e. a closed universe.

Closed Universe vs Open Universe

Scenario 1: "Big Crunch"

The universe has a lot of matter (including dark matter), and the universe's gravitational self attraction is enough to slow, halt, and reverse the expansion of the universe (initiated by the big bang).

Scenario 2: Continued expansion, but slowing down

The gravity from the matter in the universe slows down the expansion of the universe but not sufficiently to stop it.

Scenario 3: Expansion stops at infinite time

There is just enough matter in the universe to slow down the expansion of the universe and bring to a halt at infinite time.

Closed Universe vs Open Universe

Scenario 1: "Big Crunch"

The universe has a lot of matter (including dark matter), and the universe's gravitational self attraction is enough to slow, halt, and reverse the expansion of the universe (initiated by the big bang).

Scenario 2: Continued expansion, but slowing down

The gravity from the matter in the universe slows down the expansion of the universe but not sufficiently to stop it.

Scenario 3: Expansion stops at infinite time

There is just enough matter in the universe to slow down the expansion of the universe and bring to a halt at infinite time.

Question: How much matter is required to bring the universe's expansion to a stop at infinite time?

Closed Universe vs Open Universe

Scenario 1: "Big Crunch"

The universe has a lot of matter (including dark matter), and the universe's gravitational self attraction is enough to slow, halt, and reverse the expansion of the universe (initiated by the big bang).

Scenario 2: Continued expansion, but slowing down

The gravity from the matter in the universe slows down the expansion of the universe but not sufficiently to stop it.

Scenario 3: Expansion stops at infinite time

There is just enough matter in the universe to slow down the expansion of the universe and bring to a halt at infinite time.

Question: How much matter is required to bring the universe's expansion to a stop at infinite time?

Question -- rephrased: What is the average density (kg/m³) of matter required to bring the universe's expansion to a stop at infinite time?

The Revolution of 1998

Two research teams measured the distance to very far galaxies using type 1a supernovae as standard candles.

HST04Sas

HST04Yow

HST04Zwi

HST05Lan

HST05Str

Five Supernovae and Their Host Galaxies. The top row shows each galaxy and its supernova (arrow). The bottom row shows the same galaxies either before or after the supernovae exploded.

Hubble constant NOT constant !!

1998: Measurements using type 1a supernovae reveal that the expansion of the universe is slowly accelerating.

Distant supernova fainter than predicted using Hubble's law and the value of H from closer galaxies.
→ Distant galaxies are further than expected from Hubble's law.

Hubble constant NOT constant !!

1998: Measurements using type 1a supernovae reveal that the expansion of the universe is slowly accelerating.

Since then, this has been confirmed with much more observational data.

*Note: The value we now quote for Hubble's constant H is the value at the present time.

Accelerating Expansion: Dark Energy

Question: How can they expansion of the universe be accelerating?

Accelerating Expansion: Dark Energy

Question: How can they expansion of the universe be accelerating?

Answer: Something *other* than gravity must be acting.

We call it **Dark Energy**.

 \rightarrow It causes some sort of repulsive force: like a **pressure** in empty space.

Scenario 4: Accelerating Expansion

Some say the world will end in fire, Some say in ice. From what I've tasted of desire I hold with those who favor fire. But if it had to perish twice, I think I know enough of hate To say that for destruction ice Is also great And would suffice.

Note: Harlow Shapley claimed to have inspired Frost after a conversation about an astronomer's view of the fate of the world.

 \rightarrow Current evidence is pointing to an icy end to the universe.