Today's Topics

Monday, February 3, 2025 (Week 2, lecture 5) – Chapter 3.

0. Examples of Kepler's laws.

- 1. Galileo, gravity, and relativity.
- 2. Newton's laws

Motivating Questions:

1. Where do Kepler's Laws come from?

2. Can Kepler's laws be applied outside the Solar System?

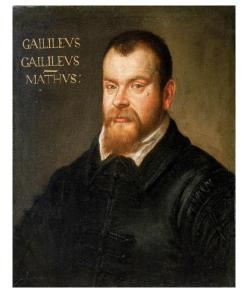
3. How come the mass of a body does not affect its orbit?

Motivating Questions:

1. Where do Kepler's Laws come from?

2. Can Kepler's laws be applied outside the Solar System?

3. How come the mass of a body does not affect its orbit?


> Kepler's laws are descriptive, but also predictive.

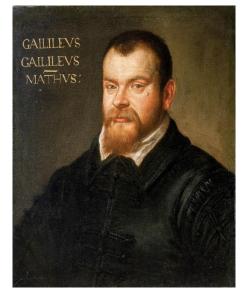
They do not really explain <u>why</u> the planets orbit in the way that they do.

Galileo Galilei: Birth of Classical Mechanics

Galileo Galilei (1564-1642)

- Universities of Pisa, Florence, Padua.
- Contributed to physics, astronomy, optics, engineering.
- Confronted Catholic Inquisition over **heliocentrism**.

Galileo (1605-1607) [by D. Tintoretto]


Galileo Galilei: Birth of Classical Mechanics

Galileo Galilei (1564-1642)

- Universities of Pisa, Florence, Padua.
- Contributed to physics, astronomy, optics, engineering.
- Confronted Catholic Inquisition over **heliocentrism**.

Physics contributions – classical mechanics

- Galilean Relativity
 - ightarrow Objects in uniform motion tend to stay in motion.
- Objects fall with a parabolic trajectory.

Galileo (1605-1607) [by D. Tintoretto]

Galileo Galilei: Birth of Classical Mechanics

Galileo Galilei (1564-1642)

- Universities of Pisa, Florence, Padua.
- Contributed to physics, astronomy, optics, engineering.
- Confronted Catholic Inquisition over **heliocentrism**.

Physics contributions – classical mechanics

- Galilean Relativity
 - ightarrow Objects in uniform motion tend to stay in motion.
- Objects fall with a parabolic trajectory.

Astronomy contributions

- Key developer of the telescope for astronomy.
- Discovered the moons of Jupiter.
- Discovered the phases of Venus (similar to Moon phases).
- Proponent of heliocentric view.

Galileo (1605-1607) [by D. Tintoretto]

Acceleration

All objects fall at the same "rate", i.e. acceleration.

Acceleration

All objects fall at the same "rate", i.e. acceleration.

Speed = change in position (i.e. distance) per unit time = $\Delta x / \Delta t$ (e.g. meters per second, km per hr)

Acceleration = change in speed per unit time = $\Delta v / \Delta t$

Acceleration

All objects fall at the same "rate", i.e. acceleration.

Speed = change in position (i.e. distance) per unit time = $\Delta x / \Delta t$ (e.g. meters per second, km per hr)

Acceleration = change in speed per unit time = $\Delta v / \Delta t$

Examples:

- 1. A car's acceleration is advertised as "0-100 km/h in 5 seconds."
- 2. Acceleration due to gravity is g = 9.8 m/s per second= 9.8 m/s²

Constant speed: x = vt

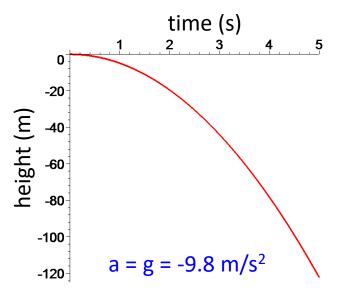
[x = position, v = speed, t = time (elapsed)]

Constant speed: x = vt

constant spece x = vt	[x - position, v - speed, v - time (clapsed)]
Constant acceleration: $v = at$	[a = acceleration]
Distance traveled: $x = \frac{1}{2}at^2$	[factor of $\frac{1}{2}$ needed because speed is not constant]
	(calculus required)

[x = nosition v = sneed t = time (elansed)]

Constant speed: x = vt [x = position, v = speed, t = time (elapsed)]


Constant acceleration: v = at

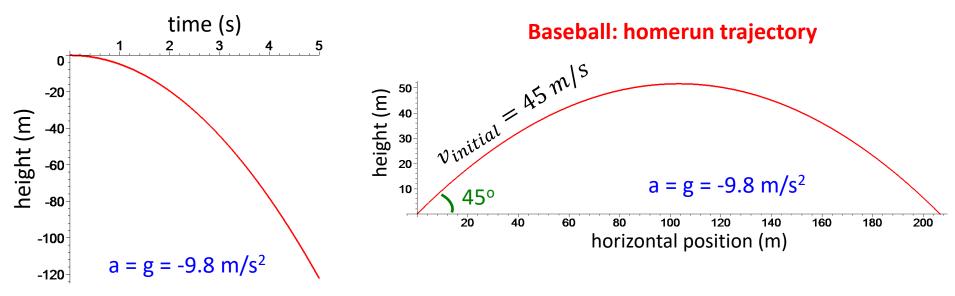
[a = acceleration]

Distance traveled: $x = \frac{1}{2}at^2$

[factor of $\frac{1}{2}$ needed because speed is not constant] (calculus required)

Dropped Object

Constant speed: x = vt [x = position, v = speed, t = time (elapsed)]


Constant acceleration: v = at

[a = acceleration]

Distance traveled: $x = \frac{1}{2}at^2$

[factor of $\frac{1}{2}$ needed because speed is not constant] (calculus required)

Dropped Object

Galilean Relativity

<u>Definition</u> An **inertial frame** is a *coordinate system* moving at constant velocity. [constant velocity = constant speed & constant direction]

→ Inertial frame = space that travels with you, e.g. car, airplane, rocket, etc ...
→ Note: an accelerating/rotating system is NOT an inertial frame.

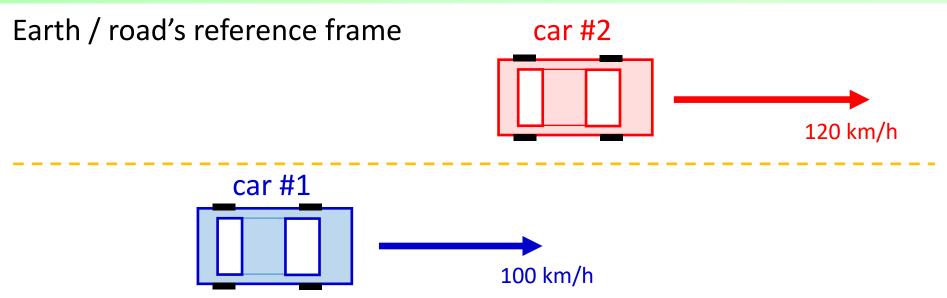
Galilean Relativity

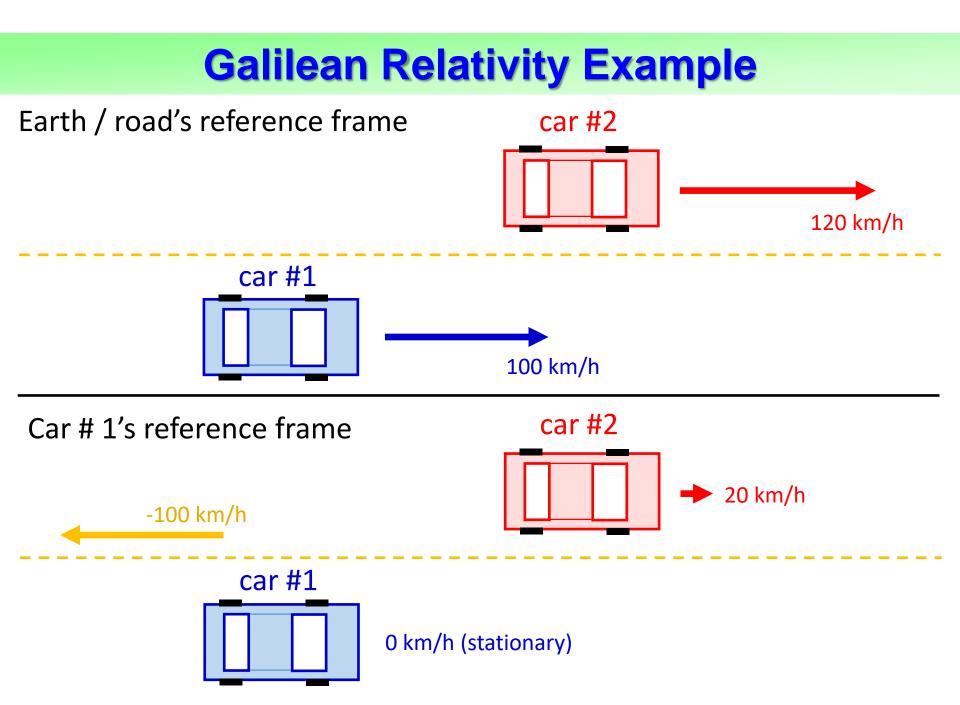
<u>Definition</u> An **inertial frame** is a *coordinate system* moving at constant velocity. [constant velocity = constant speed & constant direction]

→ Inertial frame = space that travels with you, e.g. car, airplane, rocket, etc ... → Note: an accelerating/rotating system is NOT an inertial frame.

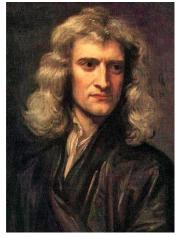
Galilean relativity posits that in any <u>inertial frame</u>:

"you cannot tell that you are moving based on local measurement."


 \rightarrow i.e. an inertial frame locally behaves as if it is at rest (locally).

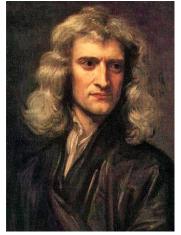

 \rightarrow corollary: an object in uniform motion will tend to stay in uniform motion.

Examples:


- 1. Car: You cannot tell that a car is moving (when at constant velocity) unless you look out window.
- 2. Airplane: You cannot tell an airplane is moving (when at constant velocity) unless you look out window (or hit turbulence).

Galilean Relativity Example

Isaac Newton: Founder of Classical Mechanics



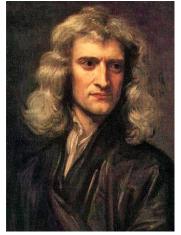
Newton (1689) [by G. Kneller]

Sir Isaac Newton (1643-1727)

- Cambridge U.
- Founded Classical Mechanics.
- Discovered Calculus.
- Major contributions to Optics & Astronomy.

Isaac Newton: Founder of Classical Mechanics

Sir Isaac Newton (1643-1727)


- Cambridge U.
- Founded Classical Mechanics.
- Discovered Calculus.
- Major contributions to Optics & Astronomy.

Newton (1689) [by G. Kneller]

Classical Mechanics

- "Newton's Laws" of classical mechanics.
- Law of universal gravitation.
- Newton's laws are used for calculating planetary & stellar motion. (+ Einstein's "Special Relativity")

Isaac Newton: Founder of Classical Mechanics

Sir Isaac Newton (1643-1727)

- Cambridge U.
- Founded Classical Mechanics.
- Discovered Calculus.
- Major contributions to Optics & Astronomy.

Newton (1689) [by G. Kneller]

Classical Mechanics

- "Newton's Laws" of classical mechanics.
- Law of universal gravitation.
- Newton's laws are used for calculating planetary & stellar motion. (+ Einstein's "Special Relativity")

Astronomy

- **Optics:** white light & colors, refraction.
- Invented the reflecting telescope.

Newton's Laws

of Classical Mechanics

1st Law: An object moves at constant velocity if there is no net force acting on it.

[fine print: in an inertial reference frame]

2nd Law: Force = mass × acceleration.

3rd Law: For any force, there is always an equal and opposite reaction force.

Newton's 1st Law

An object moves at constant velocity if there is no net force acting on it.

[fine print: in an inertial reference frame]

Note: This law is a variation on the <u>Galilean relativity</u> statement.

Newton's 2nd Law

Force = Mass × Acceleration

or

F = max F = net forcem = massa = acceleration

[fine print: in an inertial reference frame]

Newton's 2nd Law

Force = Mass × Acceleration

or

F = max F = net forcem = massa = acceleration

[fine print: in an inertial reference frame]

Note 1: This equation is mostly useful if you know the net force applied.

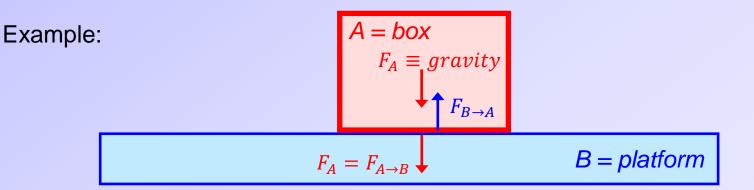
Note 2: If the acceleration is zero, then the net force is zero.

For any force, there is always an equal and opposite reaction force

$$F_{A \to B} = -F_{B \to A}$$

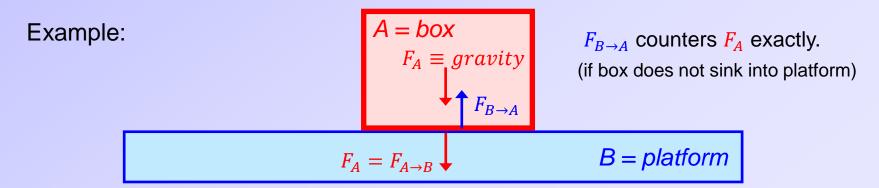
For any force, there is always an equal and opposite reaction force

$$F_{A \to B} = -F_{B \to A}$$


Example:

$$A = box$$
$$F_A \equiv gravity$$

B = platform


For any force, there is always an equal and opposite reaction force

$$F_{A \to B} = -F_{B \to A}$$

For any force, there is always an equal and opposite reaction force

$$F_{A \to B} = -F_{B \to A}$$

Newton's 3rd Law: Rocket Thrust

A rocket accelerates by pushing on its exhaust.

A rocket does NOT push on the air to accelerate. A rocket does NOT push on its platform to accelerate.

Newton's 3rd Law: Rocket Thrust

A rocket accelerates by pushing on its exhaust.

A rocket does NOT push on the air to accelerate. A rocket does NOT push on its platform to accelerate.