Today's Topics

Wednesday, February 5, 2025 (Week 2, lecture 6) – Chapter 3.

A. Galilean Relativity

B. Newton's Laws

C. Momentum & energy

D. Gravity by Newton

Galilean Relativity

<u>Definition</u> An **inertial frame** is a *coordinate system* moving at constant velocity. [constant velocity = constant speed & constant direction]

→ Inertial frame = space that travels with you, e.g. car, airplane, rocket, etc ...
 → Note: an accelerating/rotating system is NOT an inertial frame.

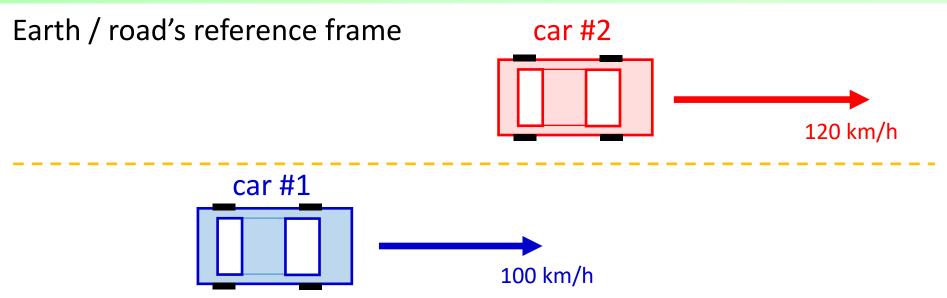
Galilean Relativity

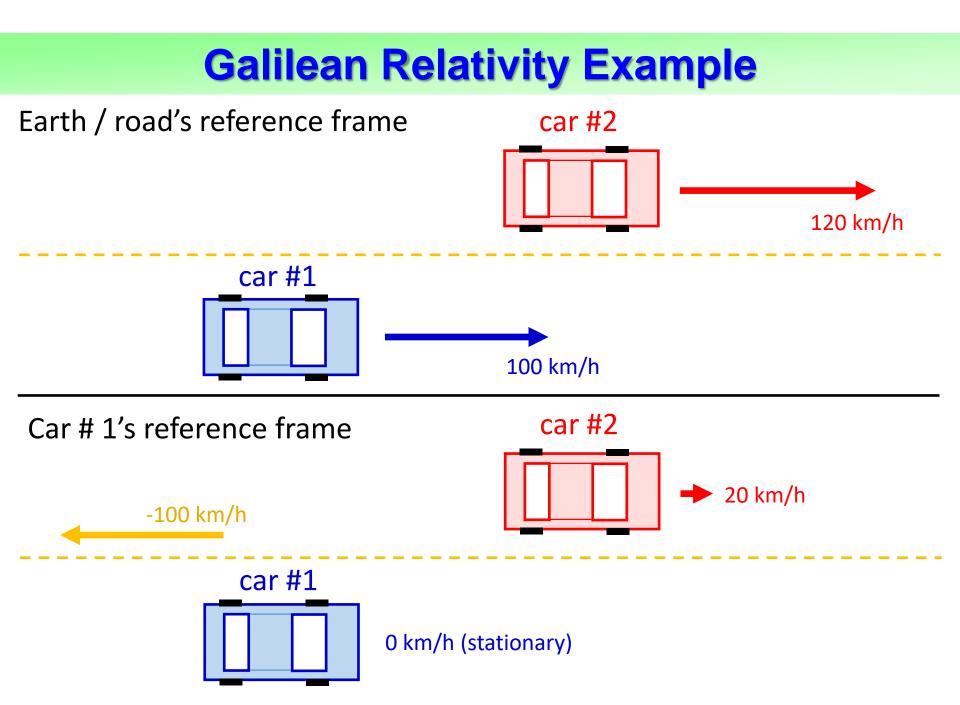
<u>Definition</u> An **inertial frame** is a *coordinate system* moving at constant velocity. [constant velocity = constant speed & constant direction]

→ Inertial frame = space that travels with you, e.g. car, airplane, rocket, etc ... → Note: an accelerating/rotating system is NOT an inertial frame.

Galilean relativity posits that in any <u>inertial frame</u>:

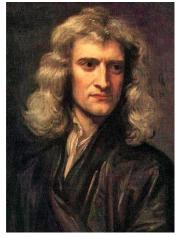
"you cannot tell that you are moving based on local measurement."


 \rightarrow i.e. an inertial frame locally behaves as if it is at rest (locally).


 \rightarrow corollary: an object in uniform motion will tend to stay in uniform motion.

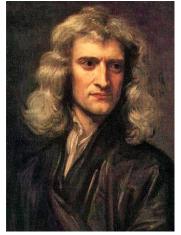
Examples:

- 1. Car: You cannot tell that a car is moving (when at constant velocity) unless you look out window.
- 2. Airplane: You cannot tell an airplane is moving (when at constant velocity) unless you look out window (or hit turbulence).


Galilean Relativity Example

PollEv Quiz: PollEv.com/sethaubin

Isaac Newton: Founder of Classical Mechanics



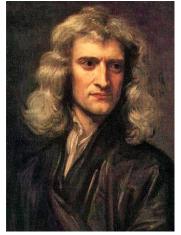
Newton (1689) [by G. Kneller]

Sir Isaac Newton (1643-1727)

- Cambridge U.
- Founded Classical Mechanics.
- Discovered Calculus.
- Major contributions to Optics & Astronomy.

Isaac Newton: Founder of Classical Mechanics

Sir Isaac Newton (1643-1727)


- Cambridge U.
- Founded Classical Mechanics.
- Discovered Calculus.
- Major contributions to Optics & Astronomy.

Newton (1689) [by G. Kneller]

Classical Mechanics

- "Newton's Laws" of classical mechanics.
- Law of universal gravitation.
- Newton's laws are used for calculating planetary & stellar motion. (+ Einstein's "Special Relativity")

Isaac Newton: Founder of Classical Mechanics

Sir Isaac Newton (1643-1727)

- Cambridge U.
- Founded Classical Mechanics.
- Discovered Calculus.
- Major contributions to Optics & Astronomy.

Newton (1689) [by G. Kneller]

Classical Mechanics

- "Newton's Laws" of classical mechanics.
- Law of universal gravitation.
- Newton's laws are used for calculating planetary & stellar motion. (+ Einstein's "Special Relativity")

Astronomy

- **Optics:** white light & colors, refraction.
- Invented the reflecting telescope.

Newton's Laws

of Classical Mechanics

1st Law: An object moves at constant velocity if there is no net force acting on it.

[fine print: in an inertial reference frame]

2nd Law: Force = mass × acceleration.

3rd Law: For any force, there is always an equal and opposite reaction force.

Newton's 1st Law

An object moves at constant velocity if there is no net force acting on it.

[fine print: in an inertial reference frame]

Note: This law is a variation on the <u>Galilean relativity</u> statement.

Newton's 2nd Law

Force = Mass × Acceleration

or

F = max F = net forcem = massa = acceleration

[fine print: in an inertial reference frame]

Newton's 2nd Law

Force = Mass × Acceleration

or

F = max F = net forcem = massa = acceleration

[fine print: in an inertial reference frame]

Note 1: This equation is mostly useful if you know the net force applied.

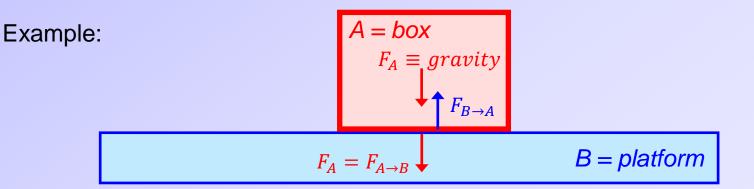
Note 2: If the acceleration is zero, then the net force is zero.

For any force, there is always an equal and opposite reaction force

$$F_{A \to B} = -F_{B \to A}$$

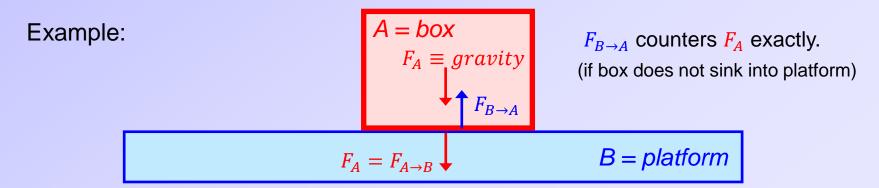
For any force, there is always an equal and opposite reaction force

$$F_{A \to B} = -F_{B \to A}$$


Example:

$$A = box$$
$$F_A \equiv gravity$$

B = platform


For any force, there is always an equal and opposite reaction force

$$F_{A \to B} = -F_{B \to A}$$

For any force, there is always an equal and opposite reaction force

$$F_{A \to B} = -F_{B \to A}$$

Newton's 3rd Law: Rocket Thrust

A rocket accelerates by pushing on its exhaust.

A rocket does NOT push on the air to accelerate. A rocket does NOT push on its platform to accelerate.

Newton's 3rd Law: Rocket Thrust

A rocket accelerates by pushing on its exhaust.

A rocket does NOT push on the air to accelerate. A rocket does NOT push on its platform to accelerate.

Newton's Laws

of Classical Mechanics

1st Law: An object moves at constant velocity if there is no net force acting on it.

[fine print: in an inertial reference frame]

2nd Law: Force = mass × acceleration.

3rd Law: For any force, there is always an equal and opposite reaction force.

Newton's Laws

of Classical Mechanics

1st Law: An object moves at constant velocity if there is no net force acting on it.

[fine print: in an inertial reference frame]

2nd Law: Force = mass × acceleration.

3rd Law: For any force, there is always an equal and opposite reaction force.

Conservation of *Momentum*.
 Conservation of *Energy*.

Conservation of Momentum

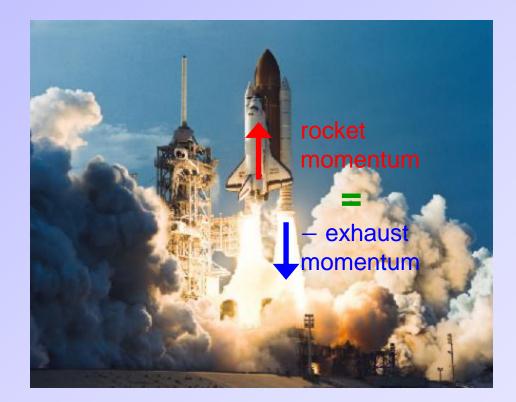
momentum = mass × velocity

total momentum = sum of the momenta of all the sub-parts of a system

Conservation of Momentum

momentum = mass × velocity

total momentum = sum of the momenta of all the sub-parts of a system


Conservation Law

The total momentum of a closed system never changes.

no external objects enter no external forces

Momentum Conservation: Rocket Thrust

 $Momentum_{rocket} + Momentum_{exhaust} = 0$

Conservation of Energy

Kinetic Energy =
$$E_k = \frac{1}{2}mv^2$$

 $m = mass$
 $v = speed$

Potential Energy = "stored" energy

example: gravitational potential energy

Total Energy = sum of the energies of all the sub-parts of a system

Conservation of Energy

Kinetic Energy =
$$E_k = \frac{1}{2}mv^2$$

 $m = mass$
 $v = speed$

Potential Energy = "stored" energy

example: gravitational potential energy

Total Energy = sum of the energies of all the sub-parts of a system

Conservation Law

The total energy of a closed system never changes.

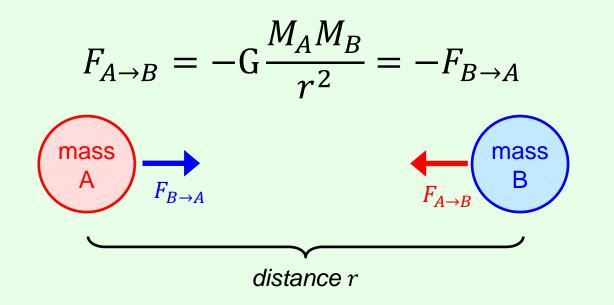
Newton figured out that the same force that is responsible for a *falling apple* is also responsible for keeping the *Moon in orbit* around the Earth.

Gravity

Newton figured out that the same force that is responsible for a *falling apple* is also responsible for keeping the *Moon in orbit* around the Earth.

Newton's law of universal gravitation

All masses attract each other according to the following relation:

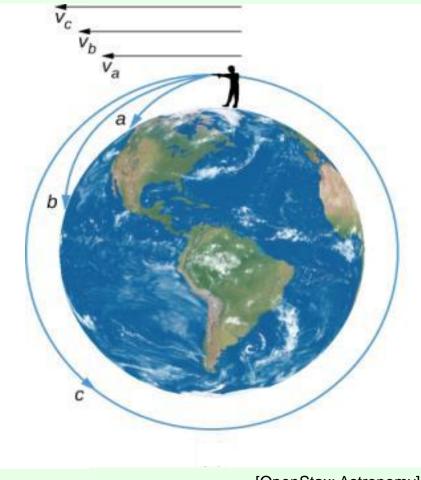


Gravity

Newton figured out that the same force that is responsible for a *falling apple* is also responsible for keeping the *Moon in orbit* around the Earth.

Newton's law of universal gravitation

All masses attract each other according to the following relation:

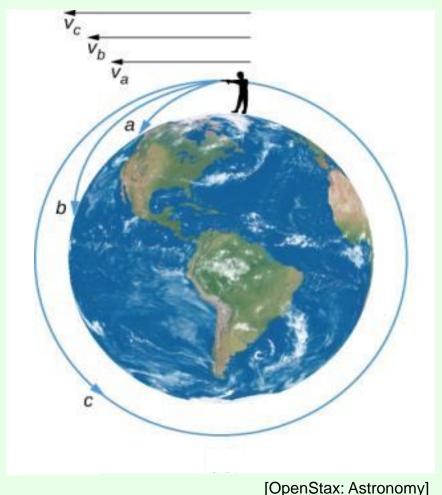

Properties

- Falls off as $1/r^2$.
- Proportional to M_A .
- Proportional to M_B .
- G = Newton's constant = $6.67430(15) \times 10^{-11}$ $m^3/Kg \cdot s^2$

Why do all objects fall at the same rate?

(to be covered in problem session)

Orbiting is free falling while missing Earth



Paths a & b: Initial speeds are weak enough that Earth's gravity pulls the projectile back to the surface.

Path c: Initial speed is strong enough that Earth's gravity never pulls the projectile back to the surface.

[OpenStax: Astronomy]

Orbiting is free falling while missing Earth

Paths a & b: Initial speeds are weak enough that Earth's gravity pulls the projectile back to the surface.

Path c: Initial speed is strong enough that Earth's gravity never pulls the projectile back to the surface.

[Adapted from De Mundi Systemate, Newton (1731)]

orbiting "The knack of flying is learning how to throw yourself at the ground and miss"

- Hitchhikers Guide to the Galaxy

Weightless in Orbit

Astronauts in Free Fall: While in space, astronauts are falling freely, so they experience "weightlessness."