Today's Topics

Monday, September 10, 2025 (Week 3, lecture 8) – Chapter "end of 3", 4.6, 5.

0. Newton's version of Kepler's 3rd law.
1. Escape velocity
2. Tides
3. Electromagnetic waves

Reminder: Problem Set #3 is on ExpertTA and is due Friday, Feb. 14 by 9:00 am.

Escape Velocity

Question

What is the minimum velocity needed to escape Earth's gravity?

$$v_{escape} = \sqrt{\frac{2GM_E}{R_E}}$$

= 11.2 km/s on Earth

Note 1: escape velocity depends on your starting point.

Note 2: Since the Earth spins, objects at "rest" close to the equator already have a significant velocity.

 \rightarrow Rockets are typically launched close to the equator (or in Florida)

The projectile reaches its maximum altitude when

 $v_{final} = v_f = 0$

The projectile reaches its maximum altitude when $v_{final} = v_f = 0$

Conservation of total energy:

The projectile reaches its maximum altitude when $v_{final} = v_f = 0$

Conservation of total energy:

The projectile reaches its maximum altitude when $v_{final} = v_f = 0$

Conservation of total energy:

The projectile reaches its maximum altitude when $v_{final} = v_f = 0$

Conservation of total energy:

The projectile just barely escapes Earth's gravity when $v_{final} = 0$ at $r_{max} \rightarrow \infty$:

The projectile reaches its maximum altitude when $v_{final} = v_f = 0$

Conservation of total energy:

The projectile just barely escapes Earth's gravity when $v_{final} = 0$ at $r_{max} \rightarrow \infty$:

$$v_{escape}^{2} = 2GM_{E}\left(\frac{1}{R_{E}} - \frac{1}{r_{max} \to \infty}\right)$$

The projectile reaches its maximum altitude when $v_{final} = v_f = 0$

Conservation of total energy:

The projectile just barely escapes Earth's gravity when $v_{final} = 0$ at $r_{max} \rightarrow \infty$:

$$v_{escape}^2 = 2GM_E\left(\frac{1}{R_E} - \frac{1}{r_{max} \to \infty}\right) \Rightarrow v_{escape} = \sqrt{\frac{2GM_E}{R_E}}$$

Tidal Force Example Ocean Tides

Ocean Tides

The force of **gravity** from the Moon is **not uniform** over the Earth.

- \rightarrow gravity from Moon falls off as $1/r^2$.
- \rightarrow Near face of Earth feels a stronger force than far face.

Ocean Tides

The force of **gravity** from the Moon is **not uniform** over the Earth.

- \rightarrow gravity from Moon falls off as $1/r^2$.
- \rightarrow Near face of Earth feels a stronger force than far face.

Result

Water on near side is pulled towards Moon more than average Earth.

Water on far side is pulled towards Moon less than average Earth.

Recall:

- Moon is in "free fall" orbit around Earth.
- Earth is in "free fall" orbit around Moon (albeit small orbit).

Moon

Recall:

- Moon is in "free fall" orbit around Earth.
- Earth is in "free fall" orbit around Moon (albeit small orbit).

Subtract average gravitational force of Moon. [since Earth is in "free fall" around Moon.]

Moon

Recall:

- Moon is in "free fall" orbit around Earth.
- Earth is in "free fall" orbit around Moon (albeit small orbit).

Subtract average gravitational force of Moon. [since Earth is in "free fall" around Moon.]

Moon

Recall:

- Moon is in "free fall" orbit around Earth.
- Earth is in "free fall" orbit around Moon (albeit small orbit).

Moon

[scijinks.gov]

Ocean water is pulled by the effective force

Ocean Tides

Animation of Earth and Oceans as seen from above North Pole.

Sun's gravity gradient affects tides as well: 46% of Moon's contribution.

- Tides are largest when Sun-Moon-Earth are aligned.
- \succ Tides are weakest when Sun & Moon are at 90° to each other.
- Shape of ocean basins & winds also affect the strength of tides.
- The atmosphere also experiences tides.

PollEv Quiz: PollEv.com/sethaubin

Week 3 Light & Matter

1. Electromagnetic waves & photons

2. Spectroscopy and atoms

3. Particles, nuclei, and fusion

REMINDER: Midterm #1 is on Friday, February 21 (in class).

Week 3 Light & Matter

2. Spectroscopy and atoms

3. Particles, nuclei, and fusion

REMINDER: Midterm #1 is on Friday, February 21 (in class).

Speed of Light

The speed of light in vacuum is always $c = 3.0 \times 10^8$ m/s. = 300,000 km/s

It's an experimental fact but also very counter-intuitive.

Speed of Light

The speed of light in vacuum is always $c = 3.0 \times 10^8$ m/s. = 300,000 km/s

It's an experimental fact | but also very counter-intuitive.

The speed of light <u>does NOT depend</u> on the observer:

- If observer A is at rest and measures the speed of light of their laser pointer, then they will measure $c = 3.0 \times 10^8$ m/s.
- If observer B is moving at 290,000 km/s, then they will measure the speed of light of <u>observer A's laser pointer</u> to be $c = 3.0 \times 10^8$ m/s.

Speed of Light in Matter

The speed of light *in matter is slower* than in vacuum

Speed of light in air = 99.97% of c

Speed of light in water = 75% of c

Speed of light in glass = 67% of c

Speed of light in **diamond = 41% of c**

Speed of light in silicon $\simeq 25\%$ of c

[123RF.com]

Note: In engineered atomic gases, light can be brought ~ 10 m/s and even stopped. (Novikova Lab at W&M)

Light:

Particle or Wave?

Electromagnetic Waves

James Clerk Maxwell (1831-1879) worked on electricity and magnetism:

- They are different facets of the same phenomenon.
- Light is a wave of electric & magnetic fields.

James Clerk Maxwell

Electromagnetic Waves

James Clerk Maxwell (1831-1879) worked on electricity and magnetism:

- They are different facets of the same phenomenon.
- Light is a wave of electric & magnetic fields.

James Clerk Maxwell

oscillating electric field

oscillating magnetic field
oscillating electric field

Electromagnetic Waves

James Clerk Maxwell (1831-1879) worked on electricity and magnetism:

- They are different facets of the same phenomenon.
- Light is a wave of electric & magnetic fields.

Wave Properties

Frequency: $f = \frac{1}{T}$ = oscillations per second

Wave Properties

Frequency: $f = \frac{1}{T}$ = oscillations per second

Wave Properties

Wave Addition: Constructive Interference

Wave Addition: Constructive Interference

Wave Addition: Destructive Interference

Wave Addition: Destructive Interference

