#### **Today's Topics**

Wednesday, February 12, 2025 (Week 3, lecture 9) – Chapter 5.

- A. Electromagnetic spectrum
  B. Blackbody radiation
  C. Inverse Square Law
  D. Light pressure
  - E. Dipole radiation

REMINDER #1: Midterm #1 is on Friday, February 21.

REMINDER #2: **Problem Set #3** is due on ExpertTA by Friday, February 14, 9:00 AM.

### **Electromagnetic Spectrum**

- Visible light represents only a small portion of electromagnetic waves.
- Electromagnetic waves cover over 25 orders of magnitude in frequency & wavelength.

### **Electromagnetic Spectrum**

- Visible light represents only a small portion of electromagnetic waves.
- Electromagnetic waves cover over 25 orders of magnitude in frequency & wavelength.



#### **Astronomers use all Wavelengths**

#### Crab Nebula (M1)

- Exploding star remnant (superonova).
- Recorded by Chinese astronomers and others (1054 AD).
- Located at about 6500 ly in our galaxy (Taurus constellation).
- This composite image is by the Hubble Space Telescope (visible light).



#### **Crab Nebula with Radio-Waves**



Radio (Very Large Array)

[VLA/NRAO/AUI/NSF]

#### **Crab Nebula with Infrared Light**



[NASA/Spitzer/JPL-Caltech]

### **Crab Nebula with Infrared Light**



### **Crab Nebula with Visible Light**



[NASA, ESA, and Hubble (STScI)]

#### **Crab Nebula with Ultraviolet Light**



[XMM-Newton/ESA]

### **Crab Nebula with X-Rays**



X-ray (Chandra)

[NASA/Chandra/CXC]

#### **Absorption by Earth's Atmosphere**



# Thermal Light Sources Blackbody Radiation

- The oldest and simplest way to make light is by heating something up (filament, gas, wood, etc).
- Hotter = brighter, colder = dimmer.
- Hotter = white-blue, colder = dim red.
- Color of thermal source  $\rightarrow$  temperature.



incandescent lightbulb

# Thermal Light Sources Blackbody Radiation

- The oldest and simplest way to make light is by heating something up (filament, gas, wood, etc).
- Hotter = brighter, colder = dimmer.
- Hotter = white-blue, colder = dim red.
- Color of thermal source → temperature.



incandescent lightbulb

**<u>Blackbody</u>** (definition): An object that does not reflect light. All light emitted by its surface is due to heat.

# Thermal Light Sources Blackbody Radiation

- The oldest and simplest way to make light is by heating something up (filament, gas, wood, etc).
- Hotter = brighter, colder = dimmer.
- Hotter = white-blue, colder = dim red.
- Color of thermal source → temperature.



incandescent lightbulb

**Blackbody** (definition): An object that does not reflect light. All light emitted by its surface is due to heat.

Ideal thermal source of light

### **Blackbody Radiation (1)**



### **Blackbody Radiation (1)**



### **Blackbody Radiation (1)**



### PollEv Quiz: PollEv.com/sethaubin

### **Blackbody Radiation (2)**

- Total output power (per unit area)
   = area under the curve
  - = Luminosity (L)
- Power = Energy per time
- Luminosity = Power per area



### **Blackbody Radiation (2)**

- Total output power (per unit area)
   = area under the curve
   = Luminosity (L)
- Power = Energy per time
- Luminosity = Power per area



**Stefan-Boltzman Law:** 
$$L = \sigma T^4$$
  
*Stefan-Boltzman constant:*  $\sigma = 5.67 \times 10^{-8} \frac{W}{m^2 K^4}$ 

### **Blackbody Radiation (2)**

- Total output power (per unit area)
   = area under the curve
   = Luminosity (L)
- Power = Energy per time
- Luminosity = Power per area



**Stefan-Boltzman Law:** 
$$L = \sigma T^4$$
 Increasing temperature, increases output power a lot *Stefan-Boltzman constant:*  $\sigma = 5.67 \times 10^{-8} \frac{W}{m^2 K^4}$ 

#### **Inverse Square Law for Light**



- As light radiates away from its source, it spreads out such that its intensity decreases as the square of the distance d from its source.
- $\succ$  Intensity  $\propto 1/d^2$









[ Josh Spradling / The Planetary Society ]







#### How do you generate light ?

**Question:** How do you generate an electromagnetic wave?

Answer: oscillate an electric charge (or accelerate it).

vv⊕ vv ⊕ vv

#### How do you generate light ?

Question: How do you generate an electromagnetic wave?

Answer: oscillate an electric charge (or accelerate it).





[Schwarzbeck Mess-Elektronik, Wikipedia (2025)]

#### **Dipole Radiation Pattern**

dipole moment =  $p_0$  = charge × separation



#### **Dipole Radiation Pattern**



[Figure 11.4, Introduction to Electrodynamics, by D. Griffiths, 4th Ed.]

Intensity = 
$$\frac{\pi^2 p_0^2}{2\epsilon_0 c^3} \cdot f^4 \cdot \frac{\sin^2 \theta}{r^2} \propto f^4 \frac{1}{r^2}$$

r = distancefrom dipole f = frequency

## Dipole Radiation Example #1 Atomic fluorescence & photon scattering

**<u>Rayleigh scattering</u>**: an atom behaves like a perfect electric dipole when excited by an EM wave.

100 EM excitation wave



## Dipole Radiation Example #1 Atomic fluorescence & photon scattering

**<u>Rayleigh scattering</u>**: an atom behaves like a perfect electric dipole when excited by an EM wave.



### Dipole Radiation Example #2 Blue Sky

**Blue light** scatters at a higher rate than red light  $\rightarrow$  Sky looks blue.



### Dipole Radiation Example #2 Blue Sky

**Blue light** scatters at a higher rate than red light  $\rightarrow$  Sky looks blue.



### Dipole Radiation Example #2 Blue Sky

**Blue light** scatters at a higher rate than red light  $\rightarrow$  Sky looks blue.

Intensity 
$$\propto f^4 \propto \frac{1}{\lambda^4} \implies \frac{\lambda_{\text{blue}} = 450 \text{ nm}}{\lambda_{\text{red}} = 650 \text{ nm}} \frac{I_{blue}}{I_{red}} = \left(\frac{650}{450}\right)^4 \approx 4.3$$