Today's Topics

Friday, February 14, 2025 (Week 3, lecture 10) – Chapter 5.

A. Light particles: photons

- B. Electronic structure of atoms & spectroscopy
- C. Doppler effect
- **D. Nuclear particles**

REMINDER #1: **Problem Set #4** is due on ExpertTA by Wednesday, February 19, 9:00 AM.

REMINDER #2: Midterm #1 is on Friday, February 21.

Light is also a particle: the Photon

- Max Planck (1858-1947) figured out that light also behaves as a *particle* using blackbody radiation.
- Albert Einstein (1879-1955) also figured out that light behaves as a particle based on the photo-electric effect.

Max Planck

- Light particle = photon =packet of EM energy
- Energy = hf (f is the frequency) h = Planck's constant = 6.626 × 10⁻³⁴ J·s
- Discovery of the photon helped initiate Quantum Mechanics.

Albert Einstein

2-slit Interference Experiment

(proof that light is a wave)

Repeat Interference Experiment one photon at a time

[A. L. Weiss and T. L. Dimitrova, Swiss Physics Society, 2009.]

Photon energy =
$$E_{\gamma} = hf$$

Important: Photon is massless $M_{\gamma} = 0$

Photon energy =
$$E_{\gamma} = hf$$

Important: Photon is massless $M_{\gamma} = 0$

Photon momentum =
$$p_{\gamma} = \frac{h}{\lambda} = \frac{E_{\gamma}}{c}$$

Note: $p_{\gamma} \neq M_{\gamma}c \ (= 0)$

Photon energy =
$$E_{\gamma} = hf$$

Important: Photon is massless $M_{\gamma} = 0$

Photon momentum =
$$p_{\gamma} = \frac{h}{\lambda} = \frac{E_{\gamma}}{c}$$

Note: $p_{\gamma} \neq M_{\gamma}c \ (= 0)$

Shine light on an atom

Photon energy =
$$E_{\gamma} = hf$$

Important: Photon is massless $M_{\gamma} = 0$

Photon momentum =
$$p_{\gamma} = \frac{h}{\lambda} = \frac{E_{\gamma}}{c}$$

Note: $p_{\gamma} \neq M_{\gamma}c \ (= 0)$

(conservation of momentum)

Basic

Structure of Atoms

- Atom consist of **positively charged nucleus** orbited by **negatively charged** electrons (for neutral atoms: total charge = zero).
- > Electron number, orbits, and properties determine the **chemistry** of the atom.

Basic

Structure of Atoms

- Atom consist of **positively charged nucleus** orbited by **negatively charged** electrons (for neutral atoms: total charge = zero).
- Electron number, orbits, and properties determine the chemistry of the atom.
- Nucleus consists of positively charged protons and neutral neutrons.
- For neutral atoms: Number of protons = number of electrons.
- > Neutrons help bind protons together. Number of neutrons \ge number of protons.

Electronic

Structure of Atoms

n = 3

n = 1

[OpenStax]

n = 2

Energy Levels of Hydrogen (n=1-4) Violet spectral line 0 n = 4 \bigcirc -5 n = 5Energy E(eV)Blue-green **Red** spectral Electron spectral line orbit line -10 Electrons have discrete allowed energies and orbits. -15 l=1 (P)l=2(D)l=3(F)l=0(S)Orbital angular momentum quantum number 1 [Figure from wikimedia.org]

Note: $1 \text{ eV} = 1.602 \times 10^{-19} \text{ J}$

Electronic

Structure of Atoms

Energy Levels of Hydrogen (n=1-4) -5 Energy E(eV)-10 -15 l=1 (P)l=3(F)l=0(S)l=2(D)Orbital angular momentum quantum number 1

[Figure from wikimedia.org]

Note:
$$1 \text{ eV} = 1.602 \times 10^{-19} \text{ J}$$

- Electrons have discrete allowed energies and orbits.
- Transitions between two energy levels requires emission or absorption of a photon that bridges the energy gap.
- Discrete emission and absorption spectra.

Emission Spectrum of Hydrogen

- Hydrogen has a number of emission and absorption spectral series that depend on the start/end point of the transition.
- Other elements are qualitatively similar.
- > Also true for molecules, but their spectra are more complicated.

Emission Spectra "Fingerprints"

If you build a catalog of spectral lines, then you can determine the elements that are present from the spectrum.

PollEv Quiz: PollEv.com/sethaubin

Identify the element in the lamp:

- A. Sodium.
- B. Hydrogen.
- C. Calcium.
- **D.** Mercury

Emission & Absorption Processes

Three types of spectra

- 1. Continuous spectrum, e.g. a thermal blackbody source.
- 2. Emission spectrum (discrete): if light excites atoms, then the atomic emission will be at discrete frequencies.
- **3.** Absorption spectrum (discrete): if a continuous spectrum excites atoms, then the absorption of photons will remove light at discrete frequencies ("shadow lines").

Doppler Effect

A moving source cannot change the speed of its emitted light, but it does change its frequency & wavelength.

Doppler Effect

A moving source cannot change the speed of its emitted light, but it does change its frequency & wavelength.

[[]image source: J. Nelson]

Doppler Effect

A moving source cannot change the speed of its emitted light, but it does change its frequency & wavelength.

Works for sound too !!!

Doppler Shift Calculation

Doppler Shift Calculation

If source is moving towards you, then light is blue shifted.

$$\Delta f > 0$$
 , f' goes up $\Delta \lambda < 0$

If source is moving away from you, then light is red shifted.

 $\Delta f < 0$, f' goes down $\Delta \lambda > 0$

Doppler Shift is for Line-of Sight Velocity Component

NASA/GSFC/NOAA/USGS)

Doppler Shift is for Line-of Sight Velocity Component

Doppler Shifts for Rotating Sources

Doppler Shifts for Rotating Sources

Doppler Shifts for Rotating Sources

Nuclear Particles

Photons are the easiest particles with which to view space, but they are not the only ones

- > Protons ($p \text{ or } p^+$), electrons ($e \text{ or } e^-$), neutrons (n)
- > Alpha particles (α)
- > Neutrinos (ν)
- > Anti-particles: Positrons (e^+) & anti-protons (p^-)
- > Cosmic rays (high energy p^+ , p^- , e^+ , e^- , α , etc)

Particle Properties

Particle	Mass (kg)	Electric charge	Forces	
Proton	1.67265 × 10 ⁻²⁷	+1	Strong, EM, weak, gravity	
Neutron	1.67495×10^{-27} $m_n \sim m_p$	0	Strong, weak, gravity	
Electron	9.11×10^{-31} $m_e \sim 1/2000 \ of \ m_p$	-1	EM, weak, gravity	
Neutrino	< 2 × 10 ⁻³⁶	0	weak, gravity	

barely interacts with anything !!! (very hard to detect)

Particle Properties

Particle	Mass (kg)	Electric charge	Forces
Proton	1.67265 × 10 ⁻²⁷	+1	Strong, EM, weak, gravity
Neutron	1.67495×10^{-27} $m_n \sim m_p$	0	Strong, weak, gravity
Electron	9.11×10^{-31} $m_e \sim 1/2000 \ of \ m_p$	-1	EM, weak, gravity
Neutrino	< 2 × 10 ⁻³⁶	0	weak, gravity

barely interacts with anything !!! (very hard to detect)

Fundamental forces

There are only 4 fundamental forces that we know of: Strong nuclear force, electromagnetic force, weak nuclear force, gravity. (holds nucleus together) [short range] [short range]