Midterm Topics (this Friday, Feb. 21)

- 1. Scientific units, notations
- 2. Exponents, trigonometry
- 3. Length scales in the universe, astronomy units
- 4. Eratosthenes: radius of the Earth
- 5. Earth's axis tilt, seasons, precession
- 6. Important stars and constellations
- 7. Kepler's Laws
- 8. Galileo's & Newton's contributions
- 9. Newton's laws
- 10. Conservation laws: Energy, momentum, angular momentum
- 11. Kinetic & Potential Energy

Midterm Topics (this Friday, Feb. 21)

- 1. Scientific units, notations
- 2. Exponents, trigonometry
- 3. Length scales in the universe, astronomy units
- 4. Eratosthenes: radius of the Earth
- 5. Earth's axis tilt, seasons, precession
- 6. Important stars and constellations
- 7. Kepler's Laws
- 8. Galileo's & Newton's contributions
- 9. Newton's laws
- 10. Conservation laws: Energy, momentum, angular momentum
- 11. Kinetic & Potential Energy

- 12. Gravity
- 13. Circular Motion
- 14. Escape velocity
- 15. Tides
- 16. Electromagnetic waves
- 17. Electromagnetic spectrum
- 18. Blackbody radiation
- 19. Photons
- 20. Electronic structure of atoms
- 21. Spectroscopy
- 22. Doppler effect
- 23. Nuclear particles
- 24. P-P chain solar fusion

Formula Sheet

$\varepsilon = \frac{d}{2a}$ $T^2 = a^3$	$v_{escape} = \sqrt{\frac{2GM_E}{R_E}}$
$\frac{v_p}{v_a} = \frac{1+\varepsilon}{1-\varepsilon}$	$f = \frac{1}{T}$
x = vt	$\lambda f = c$
v = at	$\lambda_{max} = \frac{2.9 \times 10^6}{T}$
$x = \frac{1}{2}at^2$	$L = \sigma T^4$
$F_{A \to B} = -F_{B \to A}$	$I = \frac{1}{2}c\varepsilon_0 E^2$
$E_k = \frac{1}{2}mv^2$	$\frac{2}{B} = E/c$
$F_G = G \frac{M_A M_B}{r^2}$	$P = \frac{I}{c}$
$a_c = \frac{v^2}{r}$	$I(r,\theta) = \frac{\pi^2 p_0^2}{2\epsilon_0 c^3} \cdot f^4 \cdot \frac{\sin^2 \theta}{r^2}$
$F_c = \frac{mv^2}{r}$	$p_{\gamma} = \frac{h}{\lambda} = \frac{E_{\gamma}}{c}$
$T^2 = \frac{4\pi^2}{G(M_1 + M_2)} a^3$	$M_{\gamma} = 0$
$M_1 r_1 = M_2 r_2$	$f' = f + \Delta f$
$r_2 = a \frac{M_1}{M_1 + M_2}$	$\frac{\Delta f}{f} = -\frac{\Delta \lambda}{\lambda} = \frac{v_{\parallel}}{c}$
p = mv	$v_{\parallel} = v \cos \theta$
$L = p \times r$	
L = mvr	
$E_{potential} = -G \frac{M_1 M_2}{r}$	

 $G = 6.6743 \times 10^{-11} \text{ m}^3/\text{kg.s}^2$ $1 \text{ eV} = 1.602 \times 10^{-19} \text{ J}$ $\sigma = 5.67 \times 10^{-8} \, \text{W/(m}^2 \cdot \text{K}^4)$ $h = 6.626 \times 10^{-34} \,\mathrm{J} \cdot \mathrm{s}$ $\varepsilon_0 = 8.85 \times 10^{-12} \text{ C}^2/(\text{N}\cdot\text{m}^2)$ $c = 3.0 \times 10^8 \text{ m/s}$ $m_p = 1.67265 \times 10^{-27} \text{ kg}$ $m_n = 1.67495 \times 10^{-27} \text{ kg}$ $m_e = 9.11 \times 10^{-31} \text{ kg}$ $1 \text{ AU} = 149.6 \times 10^6 \text{ km}$ $M_{Earth} = 5.97 \times 10^{24} \text{ kg}$ $R_{Earth} = 6371 \text{ km}$ $M_{Sun} = 1.99 \times 10^{30} \text{ kg}$ $R_{Sun} = 6.96 \times 10^5 \text{ km}$ $M_{Moon} = 7.34 \times 10^{22} \text{ kg}$ *R_{Moon}* = 1737 km

 $E_{total} = E_{potential} + E_{kinetic}$

Midterm Format

- ➤ 4 questions (or if two are really easy then 5 questions).
- Formula sheet will be included in test.
- Mix of quantitative and qualitative questions.
- ➤ Time: 9 am 9:50 am.
- > Write legibly. Points will be taken off for messy and unreadable test answers.

Midterm Rules

- Closed book test.
- > No internet searches ... No internet usage.
- > No artificial intelligence assistance.
- > No computers
- > No phones
- > No use of course website, Blackboard course notes, or OpenStax Astronomy book.
- Calculator recommended (with trig functions).

Today's Topics

Monday, February 17, 2025 (Week 4, lecture 11) – Chapter 5.

A. Doppler effect -- continuedB. Nuclear particlesC. Nuclear Isotopes

D. Solar fusion

REMINDER #1: **Problem Set #4** is due on ExpertTA by Wednesday, February 19, 9:00 AM.

REMINDER #2: Midterm #1 is on Friday, February 21.

Doppler Effect

A moving source cannot change the speed of its emitted light, but it does change its frequency & wavelength.

[[]image source: J. Nelson]

Doppler Shift Calculation

If source is moving towards you, then light is blue shifted.

$$\Delta f > 0$$
 , f' goes up $\Delta \lambda < 0$

If source is moving away from you, then light is red shifted.

 $\Delta f < 0$, f' goes down $\Delta \lambda > 0$

Doppler Shifts for Rotating Sources

Doppler Shifts for Rotating Sources

$$\begin{array}{c} \nu_{rotation} & \text{off} & \lambda' = \lambda - \Delta \lambda \\ \hline \\ \text{rotating} \\ \text{star} & \text{off} & \lambda' = \lambda \\ \hline \\ \nu_{rotation} & \text{vrotation} & \text{vrotation} \end{array}$$

Doppler Shifts for Rotating Sources

Nuclear Particles

Photons are the easiest particles with which to view space, but they are not the only ones

- > Protons ($p \text{ or } p^+$), electrons ($e \text{ or } e^-$), neutrons (n)
- > Alpha particles (α)
- > Neutrinos (ν)
- > Anti-particles: Positrons (e^+) & anti-protons (p^-)
- > Cosmic rays (high energy p^+ , p^- , e^+ , e^- , α , etc)

Particle Properties

Particle	Mass (kg)	Electric charge	Forces	
Proton	1.67265 × 10 ⁻²⁷	+1	Strong, EM, weak, gravity	
Neutron	1.67495×10^{-27} $m_n \sim m_p$	0	Strong, weak, gravity	
Electron	9.11×10^{-31} $m_e \sim 1/2000 \ of \ m_p$	-1	EM, weak, gravity	
Neutrino	< 2 × 10 ⁻³⁶	0	weak, gravity	

barely interacts with anything !!! (very hard to detect)

Particle Properties

Particle	Mass (kg)	Electric charge	Forces
Proton	1.67265 × 10 ⁻²⁷	+1	Strong, EM, weak, gravity
Neutron	1.67495×10^{-27} $m_n \sim m_p$	0	Strong, weak, gravity
Electron	9.11×10^{-31} $m_e \sim 1/2000 \ of \ m_p$	-1	EM, weak, gravity
Neutrino	< 2 × 10 ⁻³⁶	0	weak, gravity

barely interacts with anything !!! (very hard to detect)

Fundamental forces

There are only 4 fundamental forces that we know of: Strong nuclear force, electromagnetic force, weak nuclear force, gravity. (holds nucleus together) [short range] [short range]

Nuclear Isotopes: hydrogen

- Number of neutrons affects the properties of nucleus, but not chemistry.
- > 3 hydrogen isotopes:

Nuclear Isotopes: helium

2 stable isotopes of helium:

Note: an alpha particle (α) is a helium-4 nucleus —

Solar Fusion Proton-proton chain

Step 1: $p + p \rightarrow {}^{2}H + e^{+} + \nu$ + energy

Step 2: ${}^{2}H + p \rightarrow {}^{3}He + \gamma + energy$

Step 3: ${}^{3}He + {}^{3}He \rightarrow {}^{4}He + p + p + energy$

Step 1: p + p

Note: This reaction is very slow ... protons are estimated to wander around for 9 billion years (on average) in Sun's core before this process occurs.

Note: This reaction is very fast ... each ²H nucleus lasts about 4 seconds.

Step 3: ³He + ³He

Note: each helium-3 nucleus lasts about 400 years in the Sun's core.

Summary of proton-proton chain

Charged Particle Astronomy

Protons and electrons (and anti-protons & positrons) + α -particles

(charge = +2)

Good: lots of them, easy to detect (in space).

- → Stars emit p+ and e- as **solar wind**.
- \rightarrow **Cosmic rays** from violent stellar events.

Alphas, electrons, muons (muon = heavy electron) from radioactive Lead-210

Alphas, electrons, muons (muon = heavy electron) from radioactive Lead-208

[photos by Megan Frayser, W&M 2019]

Alphas, electrons, muons (muon = heavy electron) from background cosmic rays & radioactivity

Charged Particle Astronomy

Protons and electrons (and anti-protons & positrons) + α -particles

(charge = +2)

Good: lots of them, easy to detect (in space).

- → Stars emit p+ and e- as **solar wind**.
- \rightarrow **Cosmic rays** from violent stellar events.

Charged Particle Astronomy

Protons and electrons (and anti-protons & positrons) + α -particles

(charge = +2)

Good: lots of them, easy to detect (in space).

 \rightarrow Stars emit p+ and e- as **solar wind**.

 \rightarrow Cosmic rays from violent stellar events.

Bad: Strongly affected by planetary, solar, and galactic **magnetic fields**.

 \rightarrow Hard to identify origin/source of particle.

Particle does <u>not</u> "point back" to its origin.

 \rightarrow not useful for imaging.

What are anti-particles ?

- > Antiprotons are protons with <u>negative</u> charge (q=-1).
- > **Positrons** (anti-electrons) are electrons with <u>positive</u> charge (q=+1).
- > Antineutrons are neutrons with <u>opposite magnetic moment</u>.

What are anti-particles ?

- > Antiprotons are protons with <u>negative</u> charge (q=-1).
- > **Positrons** (anti-electrons) are electrons with <u>positive</u> charge (q=+1).
- > Antineutrons are neutrons with <u>opposite magnetic moment</u>.

Antimatter

You can build nuclei and atoms using antiprotons, positrons, and antineutrons.

➤ Anti-hydrogen consist of an anti-proton + positron.
→ Anti-hydrogen still feels attractive gravity.

Anti-helium consists of anti-alpha particle + 2 positrons. (charge = +2)

What are anti-particles ?

- > Antiprotons are protons with <u>negative</u> charge (q=-1).
- > **Positrons** (anti-electrons) are electrons with <u>positive</u> charge (q=+1).
- > Antineutrons are neutrons with <u>opposite magnetic moment</u>.

Antimatter

You can build nuclei and atoms using antiprotons, positrons, and antineutrons.

➤ Anti-hydrogen consist of an anti-proton + positron.
→ Anti-hydrogen still feels attractive gravity.

Anti-helium consists of anti-alpha particle + 2 positrons. (charge = -2)

Matter-Antimatter Annihilation

When matter and antimatter meet they **annihilate** each other to ultimately produce **gamma rays** and **neutrinos**.

