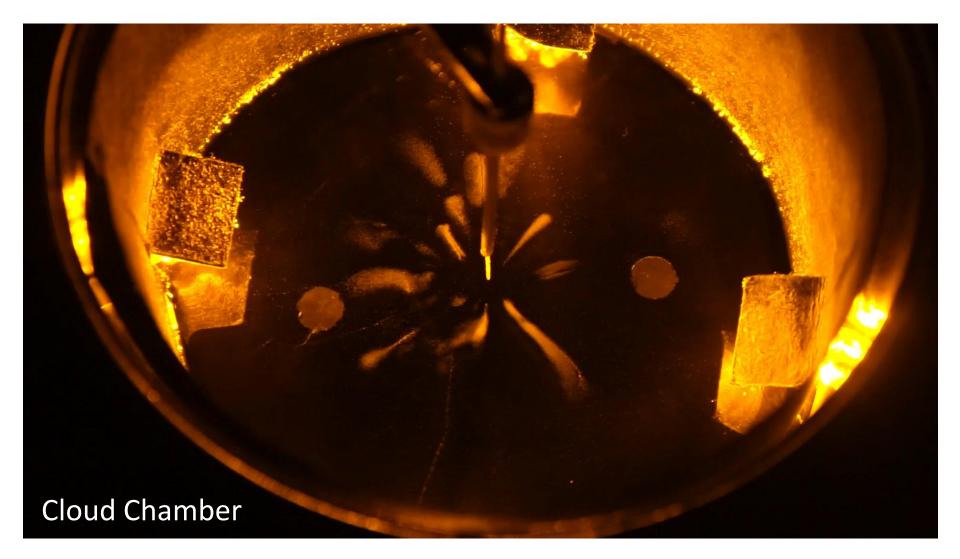
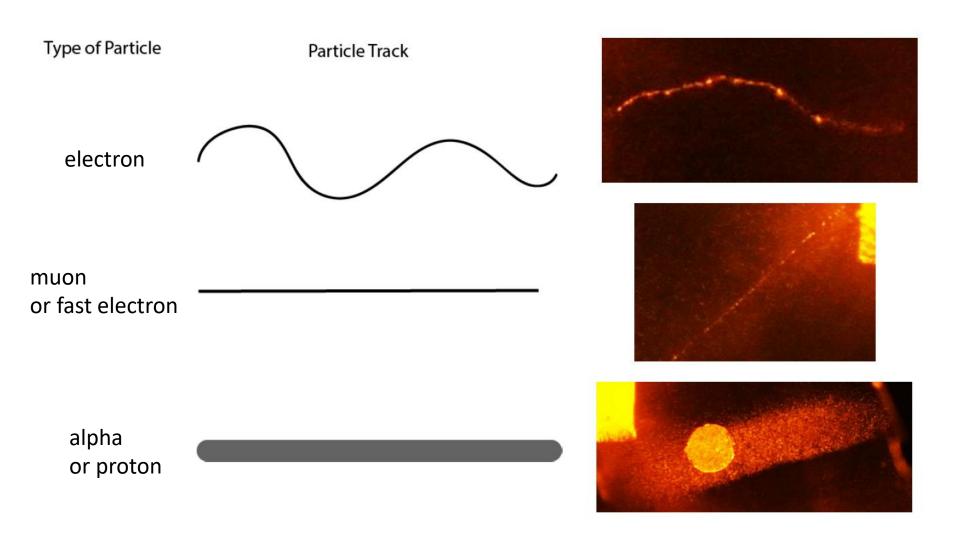
Today's Topics

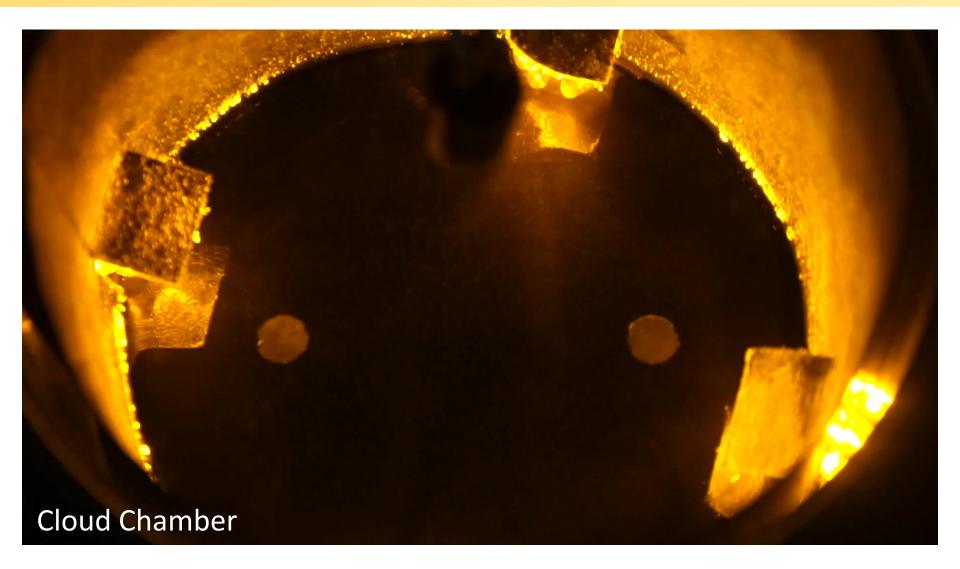
Wednesday, February 26, 2025 (Week 5, lecture 12) – Chapter 16.1-2, 6.


- 1. Nuclear particles vs Photons
- 2. Astrolabe ancient instrument
- 2. Refractive Telescopes
- 3. Reflecting Telescopes, part 1

Charged Particle Astronomy


Protons and electrons (and anti-protons & positrons) + α -particles (charge = +2)

- Good: lots of them, easy to detect (in space).
 - → Stars emit p+ and e- as **solar wind**.
 - → Cosmic rays from violent stellar events.


Alphas, electrons, muons (muon = heavy electron) from radioactive Lead-210

Alphas, electrons, muons (muon = heavy electron) from radioactive Lead-208

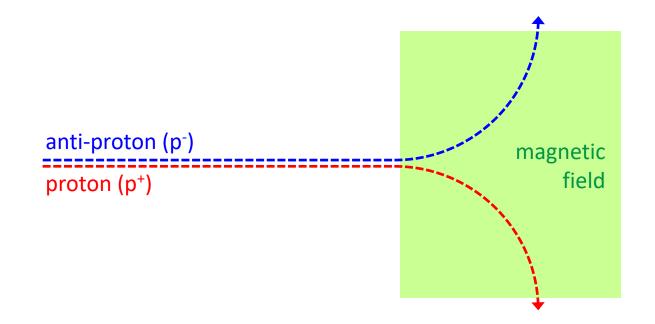
Alphas, electrons, muons (muon = heavy electron) from background cosmic rays & radioactivity

Charged Particle Astronomy

Protons and electrons (and anti-protons & positrons) + α -particles (charge = +2)

- Good: lots of them, easy to detect (in space).
 - → Stars emit p+ and e- as **solar wind**.
 - → Cosmic rays from violent stellar events.

Charged Particle Astronomy


Protons and electrons (and anti-protons & positrons) + α -particles (charge = +2)

Good: lots of them, easy to detect (in space).

- → Stars emit p+ and e- as **solar wind**.
- → Cosmic rays from violent stellar events.

Bad: Strongly affected by planetary, solar, and galactic magnetic fields.

→ Hard to identify origin/source of particle.

Particle does <u>not</u> "point back" to its origin.

→ not useful for imaging.

What are anti-particles?

- > Antiprotons are protons with negative charge (q=-1).
- \triangleright **Positrons** (anti-electrons) are electrons with <u>positive</u> charge (q=+1).
- > Antineutrons are neutrons with opposite magnetic moment.

What are anti-particles?

- \triangleright Antiprotons are protons with <u>negative</u> charge (q=-1).
- Positrons (anti-electrons) are electrons with positive charge (q=+1).
- > Antineutrons are neutrons with opposite magnetic moment.

Antimatter

You can build nuclei and atoms using antiprotons, positrons, and antineutrons.

- ➤ Anti-hydrogen consist of an anti-proton + positron.
 → Anti-hydrogen still feels attractive gravity.
- Anti-helium consists of anti-alpha particle + 2 positrons. (charge = +2)

What are anti-particles?

- \triangleright Antiprotons are protons with <u>negative</u> charge (q=-1).
- > Positrons (anti-electrons) are electrons with positive charge (q=+1).
- > Antineutrons are neutrons with opposite magnetic moment.

Antimatter

You can build nuclei and atoms using antiprotons, positrons, and antineutrons.

- ➤ Anti-hydrogen consist of an anti-proton + positron.
 → Anti-hydrogen still feels attractive gravity.
- ➤ Anti-helium consists of anti-alpha particle + 2 positrons.

 (charge = +2)

Matter-Antimatter Annihilation

When matter and antimatter meet they **annihilate** each other to ultimately produce **gamma rays** and **neutrinos**.

Neutral Particle Astronomy

Neutrons

Good: Not very affected by magnetic fields.

Bad: Short lifetime of 12 minutes \rightarrow Not useful.

Neutral Particle Astronomy

Neutrons

Good: Not very affected by magnetic fields.

Bad: Short lifetime of 12 minutes \rightarrow Not useful.

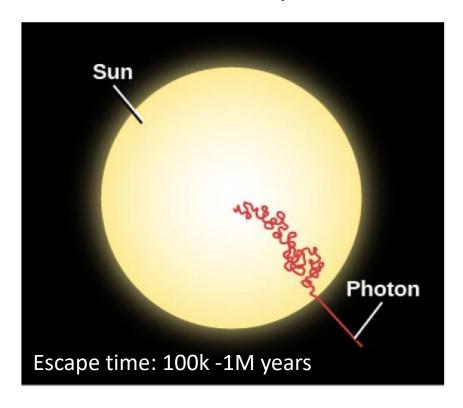
Neutrinos

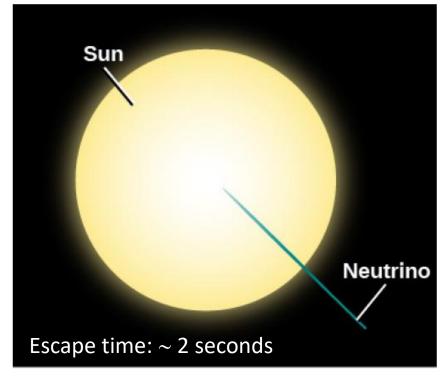
Neutrinos have <u>almost no mass</u> and **barely interact** with anything.

- → They travel at speed of light (roughly).
- → They feel gravity and weak force (in nucleus).

Good: Not affected by magnetic fields or matter, points back to source

Bad: Hard to detect, hard to image with.

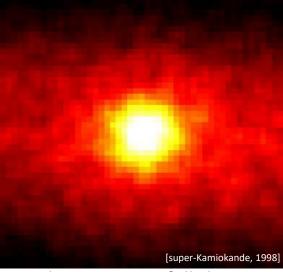

A light year of lead would only stop half the neutrinos going through it !!!


Neutrino Benefits

- > Neutrinos go through most astrophysical objects: no shadowing.
- > Neutrinos are unaffected by light, electric fields, magnetic fields.
- > Neutrinos allow you to "see" inside stars (i.e. stellar cores).

Neutrino Benefits

- > Neutrinos go through most astrophysical objects: no shadowing.
- > Neutrinos are unaffected by light, electric fields, magnetic fields.
- > Neutrinos allow you to "see" inside stars (i.e. stellar cores).

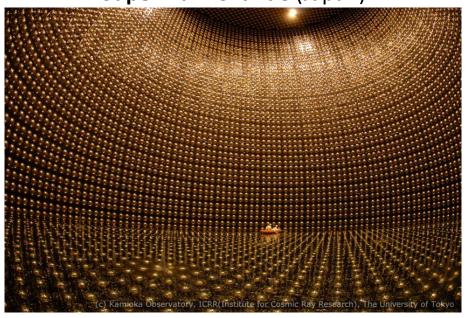


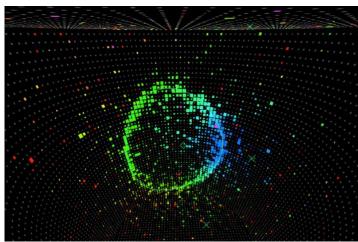
- There are lots of neutrinos, but they barely interact.
 - → About 60 billion solar neutrinos pass through every cm² of your body every second ... but they don't affect/interact with you!!!
- Neutrinos are hard to detect.
 - → Only 1 in 10¹⁸ neutrinos passing through a 1 m thick detector will interact and be detected.

- There are lots of neutrinos, but they barely interact.
 - → About 60 billion solar neutrinos pass through every cm² of your body every second ... but they don't affect/interact with you!!!
- Neutrinos are hard to detect.
 - → Only 1 in 10¹⁸ neutrinos passing through a 1 m thick detector will interact and be detected.
- Physics of neutrinos is not completely known.
 - → 3 flavors of neutrinos with different masses.
 - → Neutrinos oscillate between flavors as they travel.

- There are lots of neutrinos, but they barely interact.
 - → About 60 billion solar neutrinos pass through every cm² of your body every second ... but they don't affect/interact with you!!!
- Neutrinos are hard to detect.
 - → Only 1 in 10¹⁸ neutrinos passing through a 1 m thick detector will interact and be detected.
- Physics of neutrinos is not completely known.
 - → 3 flavors of neutrinos with different masses.
 - → Neutrinos oscillate between flavors as they travel.
- Very large detectors with very low count rates.
 - \rightarrow Event rate \sim 1 count per day (varies significantly).
 - → Imaging is possible, but slow and low resolution.
- Detectors are generally far underground to avoid cosmic rays.
 - → Lots of infrastructure needed; only possible in special locations.

- There are lots of neutrinos, but they barely interact.
 - → About 60 billion solar neutrinos pass through every cm² of your body every second ... but they don't affect/interact with you!!!
- Neutrinos are hard to detect.
 - → Only 1 in 10¹⁸ neutrinos passing through a 1 m thick detector will interact and be detected.
- Physics of neutrinos is not completely known.
 - → 3 flavors of neutrinos with different masses.
 - → Neutrinos oscillate between flavors as they travel.
- Very large detectors with very low count rates.
 - \rightarrow Event rate \sim 1 count per day (varies significantly).
 - → Imaging is possible, but slow and low resolution.

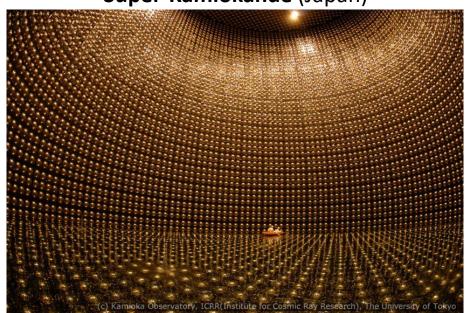


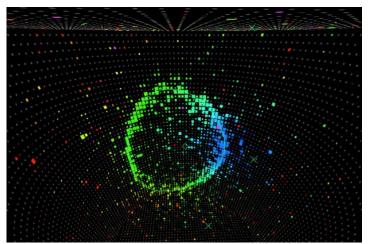

500 day exposure, full sky view.

- Detectors are generally far underground to avoid cosmic rays.
 - → Lots of infrastructure needed; only possible in special locations.

Neutrino Detectors

Super-Kamiokande (Japan)

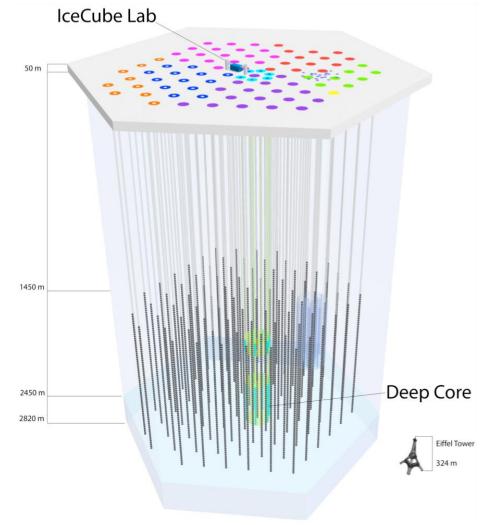




Super-Kamiokande neutrino (v_e) event.

Neutrino Detectors

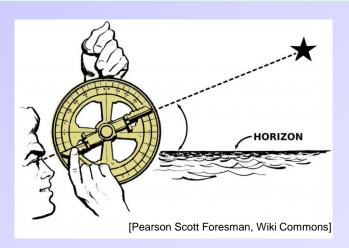
Super-Kamiokande (Japan)



Super-Kamiokande neutrino (v_e) event.

IceCube (Antarctica)

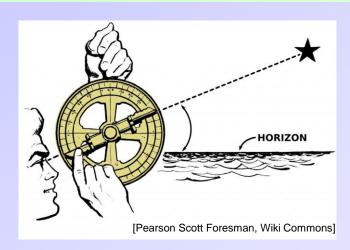
Cubic kilometer of detectors in very deep ice.


[M.G. Aartsen et al., J.Parallel Distrib.Comput. 75, 198-211 (2015); arXiv:1311.5904]

PollEv Quiz: PollEv.com/sethaubin

Astrolabe

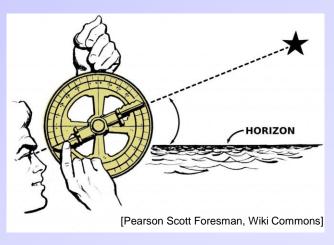
Ancient Astronomy Instrument


- Used for measuring inclination of stars.
- > Applications: astronomy, navigation, timekeeping.
- Developed by ancient greeks, c. 220-150 BC.
 - → Hypparchus, Apollonius of Perga.
 - → Possibly used by Ptolemy (100-170 AD).

Astrolabe

Ancient Astronomy Instrument

- Used for measuring inclination of stars.
- Applications: astronomy, navigation, timekeeping.
- Developed by ancient greeks, c. 220-150 BC.
 - → Hypparchus, Apollonius of Perga.
 - → Possibly used by Ptolemy (100-170 AD).
- Studied and built by Theon of Alexandria and Hypatia (philosopher, astronomer, mathematician), c. 400 AD.



Hypatia
[by Elbert Hubbard, 1908]

Astrolabe

Ancient Astronomy Instrument

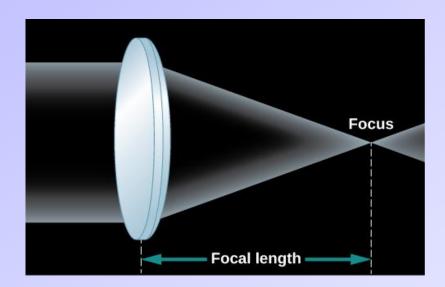
- Used for measuring inclination of stars.
- Applications: astronomy, navigation, timekeeping.
- Developed by ancient greeks, c. 220-150 BC.
 - → Hypparchus, Apollonius of Perga.
 - → Possibly used by Ptolemy (100-170 AD).
- Studied and built by Theon of Alexandria and Hypatia (philosopher, astronomer, mathematician), c. 400 AD.
- Refined by Islamic astronomers (starting in 8th century AD).
 - → Al-Fazari, Albatenius, al-Sufi, al-Tusi, Ibn al-Sarraj.
 - → Many stars retain their Islamic names (e.g. Altair, Aldebaran, Mizar, Alcor, etc)
- Propagated to medieval Europe, India, China.

Hypatia
[by Elbert Hubbard, 1908]

Modern astronomy starts with the invention of the telescope.

- → Developed by Dutch spectacle/lens makers (Lippershey, Janssen, Metius), c. 1608.
- → Galileo develops his own telescope and points it at stars and planets (1609).

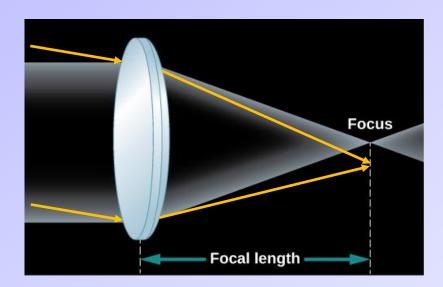
Galileo's "cannocchiali" telescope (Museo Galileo, Florence)


Modern astronomy starts with the invention of the telescope.

- → Developed by Dutch spectacle/lens makers (Lippershey, Janssen, Metius), c. 1608.
- → Galileo develops his own telescope and points it at stars and planets (1609).

Galileo's "cannocchiali" telescope (Museo Galileo, Florence)

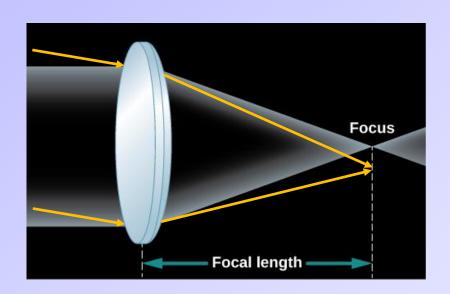
Basic Lens Physics


Modern astronomy starts with the invention of the telescope.

- → Developed by Dutch spectacle/lens makers (Lippershey, Janssen, Metius), c. 1608.
- → Galileo develops his own telescope and points it at stars and planets (1609).

Galileo's "cannocchiali" telescope (Museo Galileo, Florence)

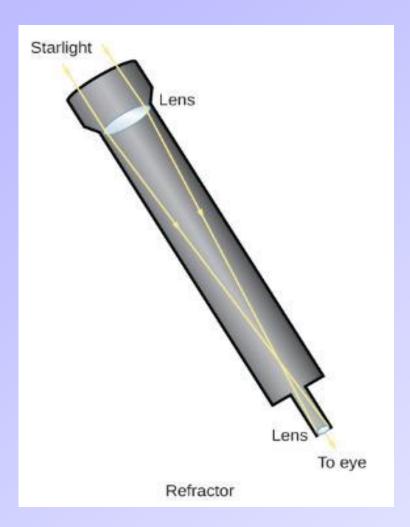
Basic Lens Physics


Modern astronomy starts with the invention of the telescope.

- → Developed by Dutch spectacle/lens makers (Lippershey, Janssen, Metius), c. 1608.
- → Galileo develops his own telescope and points it at stars and planets (1609).

Galileo's "cannocchiali" telescope (Museo Galileo, Florence)

Basic Lens Physics

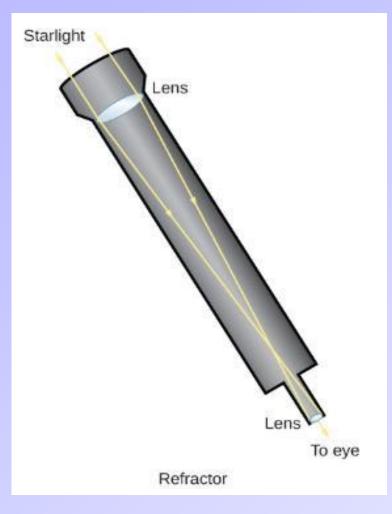


Benefits

- More light forms image (compared with eye).
- Image magnification.

Refracting Telescope

Two or more lenses are used to form an image



Benefits

- Simple to construct.
- Rugged, easy to clean.

Refracting Telescope

Two or more lenses are used to form an image

[OpenStax: Astronomy]

Benefits

- Simple to construct.
- Rugged, easy to clean.

Drawbacks

- Focal length of lens depends on wavelength (e.g. prism).
 - → chromatic aberrations.
 - → Achromatic lens reduce this problem.
 - → Long focal lengths help.
- Defects in glass distort image.
- Large lenses experience sag in the unsupported middle.
 - → Image is distorted.

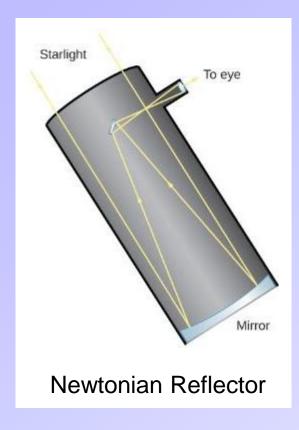
Refracting Telescope

Two or more lenses are used to form an image

Largest refracting telescope in the US: Yerkes Observatory, Williams Bay, Wisconsin (U. of Chicago).

Benefits

- Simple to construct.
- Rugged, easy to clean.

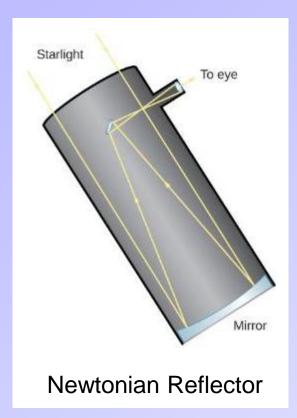

Drawbacks

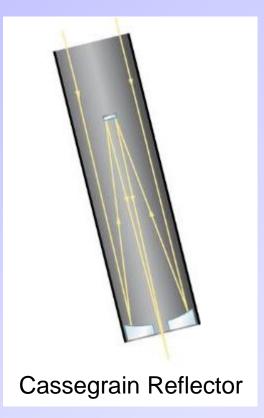
- Focal length of lens depends on wavelength (e.g. prism).
 - → chromatic aberrations.
 - → Achromatic lens reduce this problem.
 - → Long focal lengths help.
- Defects in glass distort image.
- Large lenses experience sag in the unsupported middle.
 - → Image is distorted.

Reflecting Telescope

A large curved mirror collects the light and then focuses it onto a secondary smaller mirror.

- → invented by Isaac Newton.
- → Parabolic curved mirror is ideal.





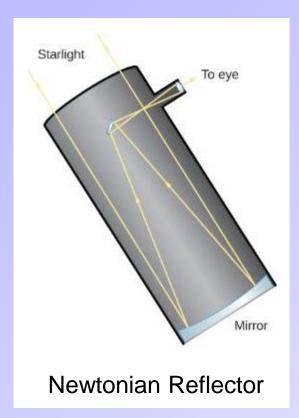
Reflecting Telescope

A large curved mirror collects the light and then focuses it onto a secondary smaller mirror.

- → invented by Isaac Newton.
- → Parabolic curved mirror is ideal.

Benefits

- No chromatic aberrations.
- Glass defects do not matter.
- Large mirror can be supported across its entirety.
 - → Sag is less of problem.


Drawbacks

- Open to air: more cleaning.
- Secondary mirror and support structure introduce diffraction effects from their shadows.

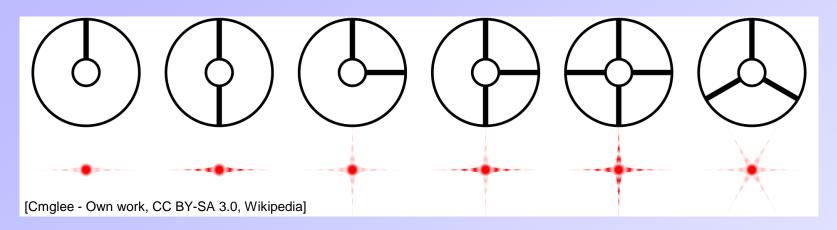
Reflecting Telescope

A large curved mirror collects the light and then focuses it onto a secondary smaller mirror.

- → invented by Isaac Newton.
- → Parabolic curved mirror is ideal.

Benefits

- No chromatic aberrations.
- Glass defects do not matter.
- Large mirror can be supported across its entirety.
 - → Sag is less of problem.


Drawbacks

- Open to air: more cleaning.
- Secondary mirror and support structure introduce diffraction effects from their shadows.

Almost all scientific telescopes are reflectors.

Star Spikes

Shadow from support structure for secondary mirror generates "star spikes".

Star Spikes from James Webb Space Telescope image (Westerlund 1 super star cluster).

Star Spikes from a Hubble Space Telescope image (NGC 6397).

[NASA, ESA, and H. Richer (University of British Columbia), Wikipedia]

Single Mirror Telescopes

The Gemini telescopes are some of the largest single mirror telescopes.

- → 8.1 m primary mirror.
- → 1 m secondary mirror.
- → Locations: Hawaii & Chile

Segmented Telescopes

Problem: A single mirror larger than 8 m will experience significant sag issues.

Solution: Segment the mirror into smaller sections for easier support.

Segmented Telescopes

Problem: A single mirror larger than 8 m will experience significant sag issues.

Solution: Segment the mirror into smaller sections for easier support.

36-segment mirror of the Keck telescope (Hawaii) [by SiOwl - Own work, CC BY 3.0, Wikipedia]

18-segment mirror of the James Webb Space Telescope.